1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
2 years ago
6

If

4\sqrt{5}" align="absmiddle" class="latex-formula">, find the value of \sqrt{x} - \frac{1}{\sqrt{x} }.
Mathematics
1 answer:
Komok [63]2 years ago
5 0

Observe that

\left(\sqrt x - \dfrac1{\sqrt x}\right)^2 = \left(\sqrt x\right)^2 - 2\sqrt x\dfrac1{\sqrt x} + \left(\dfrac1{\sqrt x}\right)^2 = x - 2 + \dfrac1x

Now,

x = 9 - 4\sqrt5 \implies \dfrac1x = \dfrac1{9-4\sqrt5} = \dfrac{9 + 4\sqrt5}{9^2 - \left(4\sqrt5\right)^2} = 9 + 4\sqrt5

so that

\left(\sqrt x - \dfrac1{\sqrt x}\right)^2 = (9 - 4\sqrt5) - 2 + (9 + 4\sqrt5) = 16

\implies \sqrt x - \dfrac1{\sqrt x} = \pm\sqrt{16} = \pm 4

To decide which is the correct value, we need to examine the sign of \sqrt x - \frac1{\sqrt x}. It evaluates to 0 if

\sqrt x = \dfrac1{\sqrt x} \implies x = 1

We have

9 - 4\sqrt5 = \sqrt{81} - \sqrt{16\cdot5} = \sqrt{81} - \sqrt{80} > 0

Also,

\sqrt{81} - \sqrt{64} = 9 - 8 = 1

and \sqrt x increases as x increases, which means

0 < 9 - 4\sqrt5 < 1

Therefore for all 0 < x < 1,

\sqrt x - \dfrac1{\sqrt x} < 0

For example, when x=\frac14, we get

\sqrt{\dfrac14} - \dfrac1{\sqrt{\frac14}} = \dfrac1{\sqrt4} - \sqrt4 = \dfrac12 - 2 = -\dfrac32 < 0

Then the target expression has a negative sign at the given value of x :

x = 9-4\sqrt5 \implies \sqrt x - \dfrac1{\sqrt x} = \boxed{-4}

Alternatively, we can try simplifying \sqrt x by denesting the radical. Let a,b,c be non-zero integers (c>0) such that

\sqrt{9 - 4\sqrt5} = a + b\sqrt c

Note that the left side must be positive.

Taking squares on both sides gives

9 - 4\sqrt5 = a^2 + 2ab\sqrt c + b^2c

Let c=5 and ab=-2. Then

a^2+5b^2=9 \implies a^2 + 5\left(-\dfrac2a\right)^2 = 9 \\\\ \implies a^2 + \dfrac{20}{a^2} = 9 \\\\ \implies a^4 + 20 = 9a^2 \\\\ \implies a^4 - 9a^2 + 20 = 0 \\\\ \implies (a^2 - 4) (a^2 - 5) = 0 \\\\ \implies a^2 = 4 \text{ or } a^2 = 5

a^2 = 4 \implies 5b^2 = 5 \implies b^2 = 1

a^2 = 5 \implies 5b^2 = 4 \implies b^2 = \dfrac45

Only the first case leads to integer coefficients. Since ab=-2, one of a or b must be negative. We have

a^2 = 4 \implies a = 2 \text{ or } a = -2

Now if a=2, then b=-1, and

\sqrt{9 - 4\sqrt5} = 2 - \sqrt5

However, \sqrt5 > \sqrt4 = 2, so 2-\sqrt5 is negative, so we don't want this.

Instead, if a=-2, then b=1, and thus

\sqrt{9 - 4\sqrt5} = -2 + \sqrt5

Then our target expression evaluates to

\sqrt x - \dfrac1{\sqrt x} = -2 + \sqrt5 - \dfrac1{-2 + \sqrt5} \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 - \dfrac{-2 - \sqrt5}{(-2)^2 - \left(\sqrt5\right)^2} \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 + \dfrac{2 + \sqrt5}{4 - 5} \\\\ ~~~~~~~~~~~~ = -2 + \sqrt5 - (2 + \sqrt5) = \boxed{-4}

You might be interested in
A. 4.312 x 10 to the power of 2
son4ous [18]

Answer:

431.2

Step-by-step explanation:

hope this helps :3

8 0
4 years ago
Read 2 more answers
AACB = ADCE. If<br> AC = 5 and BC = 7<br> CD = [ ? ).<br> PLS HELP LOL PLS
FromTheMoon [43]

Answer:

CD = 5

Step-by-step explanation:

AC = 5

BC = 7

∆ACB ≅ ∆DCE, therefore,

AC = CD,

BC = CE, and,

AB = DE

Thus,

AC = CD = 5

CD = 5

6 0
3 years ago
In triangle JKL, tan(bº) =
VikaD [51]
This is the working outs

8 0
3 years ago
Whar does7^or other numbers like it mean?
likoan [24]
7^0=1

7^1=7

7^2=7*7=49

7^3=7*7*7=343

etc... etc...
4 0
3 years ago
Read 2 more answers
What is the solution set of the quadratic equation 8x2 +2x +1 =0?
Sidana [21]
   
\displaystyle\\&#10; 8x^2 +2x +1 =0\\\\&#10;x_{12}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}=\frac{-2\pm \sqrt{2^2-4\cdot 8 \cdot 1}}{2\cdot 8}=\\\\&#10;=\frac{-2\pm \sqrt{4-32}}{16}=\frac{-2\pm \sqrt{-28}}{16}=\frac{-2\pm \sqrt{4\cdot 7\cdot(-1)}}{16}=\\\\&#10;=\frac{-2\pm 2i\sqrt{7}}{16}=\frac{-1\pm i\sqrt{7}}{8}= -\frac{1}{8}\pm  \frac{\sqrt{7}}{8}i\\\\&#10;x_1 =   \boxed{-\frac{1}{8}+  \frac{\sqrt{7}}{8}i}\\\\&#10;x_2 =   \boxed{-\frac{1}{8}-  \frac{\sqrt{7}}{8}i}\\\\&#10;x_1,~x_2~\in \mathbb{C}



4 0
4 years ago
Other questions:
  • What is the answer to the question
    12·2 answers
  • How far is Mars from the sun actually formatted
    15·1 answer
  • Describe the set of all points p(x,y) in a coordinate plane that satisfy the given condition
    8·1 answer
  • What are the first trillion digits of pi?
    7·1 answer
  • What’s the value of x
    14·1 answer
  • (-32ux+19u^2x^3-12u^6x^7) divided by (-4u^2x^3)
    15·1 answer
  • I don't remember how to do this
    8·1 answer
  • What is 60% of $55?<br> $____
    14·2 answers
  • F r e e g i v e a w a y
    14·2 answers
  • Use the graph of the function to find its domain and range. Write the domain and range in interval notation
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!