Let length, width, and height be s.
Then diagonal of any face would be √( s² + s² ) = √( 2s² )
And we know that it measures √( 500 ) so that's sufficient for us to figure out the length of an edge of the cube. We do not need to worry about the diagonal of the cube.
Now we have to solve √( 500 ) = √( 2s² )
Square both sides:
500 = 2s²
Divide both sides by 2:
250 = s²
Take the square root of both sides:
√(250) = s ≈ 15.8113883
Rounding to nearest tenth:
s ≈ 15.8
Final answer: 15.8
Hope this helps.
Factors can be multiplied together to get the original number.
For example here are the factors of 66.
1 and 66. 2 and 33. 3 and 22. 6 and 11.
1 multiplied by 66 results in the original number 66.
2 multiplied by 33 results in the original number 66.
3 multiplied by 22 results in the original number 66.
<span>6 multiplied by 11 results in the original number 66.</span>
![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{64}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{0\qquad \textit{from the ground}}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B64%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B0%5Cqquad%20%5Ctextit%7Bfrom%20the%20ground%7D%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

Check the picture below, it hits the ground at 0 feet, where it came from, the ground, and when it came back down.
Answer:
Circumference = 10π
Step-by-step explanation:
First identify the circumference formula as such:
2πr (where r ⇒ radius, π ⇒ pi)
Knowing 2 times the radius (2r) in the formula can be rewritten as the diameter, the formula itself can be rewritten as:
πd (where d ⇒ diameter, π ⇒ pi)
If we know the diameter = 10 inches, substitute in the circumference formula πd to get:
π * 10 inches = 10 * π inches = 10π inches