Answer: A balloon is charged by a process of frictional charging and the object is getting charged by the process of induction.
Explanation:
When two bodies are rubbed against each other, charging by friction or rubbing occurs. The electropositive object loses electrons to electronegative object. Thus, when balloon is rubbed on a wall, it becomes charged.
The charged balloon is able to attract an uncharged object by inducing charge on it without the two objects touching each other. Electrostatic force acts between two charged objects. Charged balloon causes electrons to move at one end thereby inducing opposite charge in the object and thus, charged balloon is able to attract uncharged object.
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.
The answer is C as enzymes are biological catalysts that act on a substrate such as starch if the enzyme were amylase
hope that helps
Answer:
1.209g of MgO participates
Explanation:
In this problem, we have 0.030 moles of MgO that participates in a particular reaction.
And we are asked to solve for the mass of MgO that participates, that means, we need to convert moles to grams.
To convert moles to grams we need to use molar mass of the compound:
<em>1 atom of Mg has a molar mass of 24.3g/mol</em>
<em>1 atom of O has a molar mass of 16g/mol</em>
<em />
That means molar mass of MgO is 24.3g/mol + 16g/mol = 40.3g/mol
And mass of 0.030 moles of MgO is:
0.030 moles MgO * (40.3g/mol) =
<h3>1.209g of MgO participates</h3>
Answer:
they're losing electrolytes
Explanation:
When athletes sweat, they're losing electrolytes primarily in the form of sodium (Na+) and chloride (Cl-), so when you start to replace lost fluids, ahtletes should replace the electrolytes as well. Potassium (K+), Magnesium (Mg2+) and Calcium (Ca2+) are electrolytes also lost through sweating.