Answer:
YIKES. a bit late. Answers include 1, 2, 3
Explanation:
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
Metallic bonding
The particles in a metal are held together by metallic bonds.
High melting and boiling points
Metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.
Conducting electricity
Metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.
Metallic bonding - Higher tier
Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalised electrons.
Answer:
For this experiment we are going to take plate 1 as the control plate, so, in it there will be just E. coli in LB/agar; in plate 2, we are going to put E. coli in LB/agar and some ampicillin. Then, we have to wait for the E. coli colonies to form. After a while, the E. coli growth can be compared on both plates and determine if ampicillin affects or not the E. coli colonies.
Explanation:
If the ampicillin affects negatively E. coli colonies, we are going to observe that in plate 1 (control plate) there are E. coli colonies growing, but in plate 2, there is no E. coli colonies or, at least, there is a fewer number of colonies on it. If ampicillin doesn't affect E.coli, plate 1 (control) and plate 2 (ampicillin experiment) are going to be similar in number of colonies.