Answer:
18.0 g H₂O
Explanation:
To find the mass of water (H₂O), you need to (1) convert grams O₂ to moles O₂ (via the molar mass), then (2) convert moles O₂ to moles H₂O (via mole-to-mole ratio from equation coefficients), and then (3) convert moles H₂O to grams H₂O (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the sig figs of the given value.
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂ + 1 O₂ -----> 2 H₂O
16.0 g O₂ 1 mole 2 moles H₂O 18.014 g
--------------- x ---------------- x --------------------- x ----------------- = 18.0 g H₂O
31.996 g 1 mole O₂ 1 mole
Letter C would be the correct answer
Answer:
check it below
Explanation:
NaCl; Sodium Chloride is an ionic compound formed by sodium and Chlorine.
Ionic bond is very strong, It can't be separated back to sodium and chlorine just by physical change. Chemicals which are more reactive can displace ions, thus seperate it
Answer:
The answer to your question is below
Explanation:
Factors that affect the rate of a chemical reaction
- Temperature If the temperature increases the rate of reaction increases.
- Concentration The reaction will move where there less concentration it could be to the reactants of products.
- Particle size The lower the particle size the higher the rate of reaction.
- Catalyst Catalyzers accelerate the rate of reaction
- Pressure The reaction will move where there are fewer molecules.