Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.
Simple cations are formally called by their element names with a suffixed Roman numeral in parentheses to indicate its charge. A simple anion has a name that is the original elemental name with the final syllable changed to -ide.
Answer:
100g / (5.2g/cm3)
= 100g / (5.2g / 1cm3)
= 100g x 1cm3 / 5.2 g
= 19.2 cm3
Since 1 cm3 = 1 ml, your answer is 19.2 ml.
Answer: C2H2
Explanation: Because each of the lines represent one bond, and because there are three lines (bonds) between the carbons, it means that they are bonded by three bonds, also known as a triple bond.
Organic compounds contain carbon