Answer:
The total energy to break all the bonds in 1 mole of 1-propanol, C₃H₈O, is 4411 kJ/mol
Explanation:
We note that propanol, C₃H₈O is also known as 1-propanol is written as follows;
CH₃CH₂CH₂OH which gives
CH₃-CH₂-CH₂-OH
Hence, the total number of bonds are;
C-H Bonds = 3 + 2 + 2 = 7
C-O Bonds = 1
O-H Bond = 1
C-C Bonds = 2
The bond energies are as follows;
C-H Bonds = 413 kJ/mol
C-O Bonds = 358 kJ/mol
O-H Bond = 468 kJ/mol
C-C Bonds = 347 kJ/mol
Energy required to break the bonds in 1-propanol is therefore;
C-H Bonds = 413 kJ/mol × 7 = 2,891 kJ/mol
C-O Bonds = 358 kJ/mol × 1 = 358 kJ/mol
O-H Bond = 468 kJ/mol × 1 = 468 kJ/mol
C-C Bonds = 347 kJ/mol × 2 = 694 kJ/mol
The total energy to break all the bonds in 1 mole of 1-propanol = 4411 kJ/mol.
The grams of hydrogen gas can be burned if 40. liters of oxygen at 200. k and 1.0 atm is 4.88 grams.
<h3>How do we calculate grams from moles?</h3>
Grams (W) of any substance will be calculated by using their moles (n) through the following equation:
M = molar mass
And moles of the gas will be calculated by using the ideal gas equation as:
P = pressure = 1atm
V = volume = 40L
n = moles = ?
R = universal gas constant = 0.082 L.atm / K.mol
T = temperature = 200K
On putting these values on the above equation, we get
n = (1)(40) / (0.082)(200) = 2.439 = 2.44 moles
- Now grams of hydrogen gas will be calculated by using the first equation as:
W = (2.44mol)(2g/mol) = 4.88g
Hence required mass of hydrogen gas is 4.88g.
To know more about ideal gas equation, visit the below link:
brainly.com/question/15046679
#SPJ1