Answer:
A. Soaps react with ions in hard water to create a precipitate.
B. Soaps are both hydrophobic and hydrophilic.
D. Soaps should be weakly alkaline in solution.
Explanation:
A. Hard water contains <u>magnesium and calcium minerals</u> like calcium and magnesium carbonates, sulfates and bicarbonates. As soon as these minerals come in contact with soap their ions like Mg²⁺ & Ca²⁺ form precipitates.
B. Soap are both hydrophilic and hydrophobic. They reason why they exhibit both the properties is really important for their functionality. The hydrophobic part of soap makes interaction with oil/dust particles while the hydrophilic part makes interaction with water. When the cloth is rinsed the dirt/soap particles are removed from the dirty clothes thereby making them clean.
C. Soaps have alkaline pH i.e. more than 7 that is why they have bitter taste.
There is an unstable ratio of protons and neutrons. Because protons are positively charged but neutrons have no charge, an increase in the number of protons means there needs to be an increase in the number of neutrons to "bind" the nucleus together. This is because like charges repel, so the protons will repel each other, and if there aren't enough neutrons to act as "glue" to hold the nucleus together, the nucleus will break apart.
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation of an atom in a chemical compound.
<u>Explanation:</u>
The oxidation number of an atom is the charge that atom would have if the compound was composed of ions. 1. The oxidation number of an atom is zero in a neutral substance that contains atoms of only one element. The oxidation number of simple ions is equal to the charge on the ion.
The oxidation number of a mono atomic ion equals the charge of the ion. The oxidation number of H is +1, but it is -1 in when combined with less electro negative elements. The oxidation number of O in compounds is usually -2, but it is -1 in peroxides. The oxidation number of a Group 1 element in a compound is +1.