Answer:
Answer: A. Gases are easily compressed because of the low density.
Explanation:
Answer:
A. 266g/mol
Explanation:
A colligative property of matter is freezing point depression. The formula is:
ΔT = i×Kf×m <em>(1)</em>
Where:
ΔT is change in temperature (0°C - -0,14°C = 0,14°C)i is Van't Hoff factor (1 for a nonelectrolyte dissolved in water), kf is freezing point molar constant of solvent (1,86°Cm⁻¹) and m is molality of the solution (moles of solute per kg of solution). The mass of the solution is 816,0g
Replacing in (1):
0,14°C = 1×1,86°Cm⁻¹× mol Solute / 0,816kg
<em>0,0614 = mol of solute</em>.
As molar mass is defined as grams per mole of substance and the compound weights 16,0g:
16,0g / 0,0614 mol = 261 g/mol ≈ <em>A. 266g/mol</em>
I hope it helps!
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
<span>
Plants and animals are multi-cellular organisms composed of eukaryotic cells, while bacteria are single-cell prokaryotic organisms. Each eukaryotic cell of a plant or animal includes a central nucleus containing DNA and membrane-bound organelles, such as endoplasmic reticulum and mitochondria. A bacterial cell has no nucleus or membrane-bound organelles.
hope it helps! :)
</span>