Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
Chlorine would become a liquid. Its boiling point is around -34 Celsius so at any temperature below that it would be liquid.
Look to be honest, I don't know how to work out the problem, but my teacher, and my says it takes 8 minutes for the Sun's light to reach
hope my answer works :)
Activation energy is the energy required by reactants to undergo chemical reaction and given products
Every reactant has some internal energy (sum of all kind of energy like kinetic energy, potential energy, mechanical energy, chemical energy etc). It needs some extra energy to undergo chemical reaction which is activation energy
All kinds of reaction whether exothermic or endothermic needs activation energy
Threshold energy = internal energy + activation energy