Answer:
the plant population over time has decreased. this could make all other organisms above the plant population numbers decrease as well.
Explanation:
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662
Answer:
C. Its oxidation number increases.
Explanation:
- <em><u>Oxidation is defined as the loss of electrons by an atom while reduction is the gain of electrons by an atom</u></em>.
- Atoms of elements have an oxidation number of Zero in their elemental state.
- When an atom looses electrons it undergoes oxidation and its oxidation number increases.
- For example, <em><u>an atom of sodium (Na) at its elemental state has an oxidation number of 0. When the sodium atom looses an electrons it becomes a cation, Na+, with an oxidation number of +1 , the loss of electron shows an increase in oxidation number from 0 to +1.</u></em>
Answer: The actual reaction to make water is a bit more complicated: 2H2 + O2 = 2H2O + Energy. In English, the equation says: To produce two molecules of water (H2O), two molecules of diatomic hydrogen (H2) must be combined with one molecule of diatomic oxygen (O2). Energy will be released in the process.
Explanation: