Strong Acid has a lower pH level than a weak acid, weak acid pH level will be closer to 7 than the strong acid. Weak acid does not dissociate completely, therefore a weaker proton donor, thus higher pKa. Strong acids dissociates completely and release all of their hydrogen atom when dissolve in water.
I don't get what you are saying... Can you reword it?
Answer:
Pollination is the act of transferring pollen grains from the male anther of a flower to the female stigma. The goal of every living organism, including plants, is to create offspring for the next generation. One of the ways that plants can produce offspring is by making seeds.
Explanation:
hoped it helped
Answer:
5.2 x 10⁻⁴ M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = kC</em>
where P is the partial pressure of the gaseous solute above the solution.
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas.
- At two different pressures, there is two different concentrations of dissolved gases and is expressed in a relation as:
<em>P₁C₂ = P₂C₁,</em>
P₁ = 1.0 atm, C₁ = 6.8 x 10⁻⁴ mol/L.
P₂ = 0.76 atm, C₂ = ??? mol/L.
<em>∴ C₂ = (P₂C₁)/P₁ =</em> (0.76 atm)(6.8 x 10⁻⁴ mol/L)/(1.0 atm) = <em>5.168 x 10⁻⁴ mol/L ≅ 5.2 x 10⁻⁴ M.</em>
a. AgBr(s)⇒ Ag⁺(aq) + Br⁻(aq)
b. Ksp AgBr = s²
c. 5 x 10⁻¹³ mol/L
<h3>Further explanation</h3>
Given
solubility AgBr = 7.07 x 10⁻⁷ mol/L
Required
The dissolution reaction
Ksp
The solubility product constant
Solution
a. dissolution reaction of AgBr
AgBr(s)⇒ Ag⁺(aq) + Br⁻(aq)
b. Ksp
Ksp AgBr = [Ag⁺] [Br⁻]
Ksp AgBr = (s) (s)
Ksp AgBr = s²
c. Ksp AgBr = (7.07 x 10⁻⁷)² = 5 x 10⁻¹³ mol/L