Answer: TheTroposphere contains 80% of the total gas in the atmosphere
The minimum height of the dive needed to achieve the given speed is v = 69 m/s is 242.9 m.
Given information:
The mass of peregrine falcon is, m = 480
The final speed reached by the peregrine falcon in a vertical dive is, v = 69 m/s
It is given that the falcon is diving vertically downward. It can be compared with the same situation as the free-falling object under the effect of gravity only. So, the initial velocity of the falcon will be u = 0 m/s as the motion starts with rest.
The value of the gravitational acceleration of gravity is, g = 9.80 m/s²
Now, using the third equation of motion, the minimum height required for the final speed will be,
v² - u² = 2gh
69² - 0² = 2 × 9.8 × h
h = 242.9m.
Therefore, the minimum height of the dive needed to achieve the given speed is 242.9 m.
Learn more about falcon speeds at
brainly.com/question/12449855
#SPJ4
The time taken for the spaceship to increase its speed from 11.1 km/s to 11.7 km/s is 107 s
<h3>Data obtained from the question</h3>
The following data were obtained from the question given above:
- Initial velocity (u) = 11.1 Km/s
- Final velocity (v) = 11.7 Km/s
- Distance (s) = 1220 Km
- Time (t) =?
<h3>How to determine the time</h3>
The time taken for the spaceship to increase its speed from 11.1 km/s to 11.7 km/s can be obtained as illustrated below:
s = (u + v)t / 2
Cross multiply
(u + v)t = 2s
Divide both sides by (u + v)
t = 2s / (u + v)t
t = (2 × 1220) / (11.1 + 11.7)
t = 2440 / 22.8
t = 107 s
Thus, the time taken for the spaceship to change its speed is 107 s
Learn more about speed:
brainly.com/question/680492
Learn more about velocity:
brainly.com/question/3411682
#SPJ1
OK. Thank you. That's an impulse of 200 Newton-sec to the left,
telling us that the cart's leftward momentum increases by 200 kg-m/s
(or its rightward momentum decreases by that amount).
Did you have a question to ask ?