1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
2 years ago
9

Find the taylor series centered at the given value of a and find the associated radius of convergence. (1) f(x) = 1 x , a = 1 (2

) f(x) = (x 2 2x)e x , a = 0
Mathematics
1 answer:
Kitty [74]2 years ago
3 0

a) The radius of convergence is calculated as

R=1.

b) Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

<h3>What is the associated radius of convergence.?</h3>

(a)

Take into consideration the function f with respect to the number a,

f(x)=\frac{1}{x}, \quad a=1

In case you forgot, the Taylor series for the function $f$ at the number a looks like this:

\begin{aligned}f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\&=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{*}(a)}{2 !}(x-a)^{2}+\ldots\end{aligned}

Determine the function f as well as any derivatives of the function $f by setting a=1 and working backward from there.

\begin{aligned}f(x) &=\frac{1}{x} & f(1)=\frac{1}{1}=1 \\\\f^{\prime}(x) &=-\frac{1}{x^{2}} &  f^{\prime}(1)=-\frac{1}{(1)^{2}}=-1 \\\\f^{\prime \prime}(x) &=\frac{2}{x^{3}} &  f^{\prime \prime}(1)=\frac{2}{(1)^{3}}=2 \\\\f^{\prime \prime}(x) &=-\frac{2 \cdot 3}{x^{4}} & f^{\prime \prime}(1)=-\frac{2 \cdot 3}{(1)^{4}}=-2 \cdot 3 \\\\f^{(*)}(x) &=\frac{2 \cdot 3 \cdot 4}{x^{5}} & f^{(n)}(1)=\frac{2 \cdot 3 \cdot 4}{(1)^{5}}=2 \cdot 3 \cdot 4\end{aligned}

At the point when a = 1, the Taylor series for the function f looks like this:

f(x) &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \\\\&=f(1)+\frac{f^{\prime}(1)}{1 !}(x-1)+\frac{f^{\prime}(1)}{2 !}(x-1)^{2}+\frac{f^{\prime \prime}(1)}{3 !}(x-1)^{3}+\cdots \\

&=1+\frac{-1}{1 !}(x-1)+\frac{2}{2 !}(x-1)^{2}+\frac{-2 \cdot 3}{3 !}(x-1)^{3}+\frac{2 \cdot 3 \cdot 4}{4 !}(x-1)^{4}+\cdots \\\\&=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}+\cdots \\\\&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

In conclusion,

&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

Find the radius of convergence by using the Ratio Test in the following manner:

\begin{aligned}L &=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\&=\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{(-1)^{n}(x-1)^{n}} \mid \\&=\lim _{n \rightarrow \infty}|x-1| \\&=|x-1|\end{aligned}

The convergence of the series when L<1, that is, |x-1|<1.

The radius of convergence is calculated as

R=1.

For B

Take into consideration the function f with respect to the number a,

a_{n}=(-1)^{n}(x-1)^{n}

f(x)=\left(x^{2}+2 x\right) e^{x},  a=0 The Taylor series for f(x)=e^{x} at a=0 is,

e^{2}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots

f(x) &=\left(x^{2}+2 x\right) e^{x} \\&=\left(x^{2}+2 x\right)\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+2 x\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right) \\&=x^{2}\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+\left(\frac{x^{4}}{2 !}+\frac{x^{5}}{3 !}+\frac{x^{6}}{4 !}+\ldots\right)+\left(2 x+2 x^{2}+\frac{2 x^{3}}{2 !}+\frac{2 x^{4}}{3 !}+\frac{2 x^{5}}{4 !}+\ldots\right) \\

&=\left(x^{2}+x^{3}+\frac{x^{4}}{2 !}\right) \\&=2 x+3 x^{2}+\left(1+\frac{2}{2 !}\right) x^{3}+\left(\frac{1}{2 !}+\frac{2}{3 !}\right) x^{4}+\left(\frac{1}{4 !}\right) x^{5}+\ldots \\&=2 x+3 x^{2}+2 x^{3}+\frac{5}{6} x^{4}+\frac{1}{4} x^{5}+\ldots

Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

Read more about convergence

brainly.com/question/15415793

#SPJ4

The complete question is attached below

You might be interested in
Please help me quickly
bekas [8.4K]

Answer:

D

when you look at it it is upside down so d is the right answer

4 0
2 years ago
Find the value of x. The diagram is not to scale.
DiKsa [7]

Sum of interior angles in a pentagon=540°

148+112+2x+2x+10+90=540

360+4x=540

4x=540-360

4x=180

x=180/4

x=45°

5 0
3 years ago
A local animal shelter has many cats and dogs. The shaded part represents the percent of animals that are dogs. If there are 82
frutty [35]

Answer:

weel if you divide 82 by 2 then it you will get the number of cats which is 41 then add 82 + 41 =123

Step-by-step explanation:

mark me brainliest

3 0
2 years ago
Find the six arithmetic means between 1 and 29.
sp2606 [1]
1, ___, ____, _____, _____, _____, ____, 29

29-1 = 28
28/7 = 4
1, 5, 9, 13, 17, 21, 25, 29
7 0
3 years ago
5. A company intends to collect a random sample of size n from a population
Katarina [22]

Answer:D

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Three single-digit numbers multiply to make 168
    10·1 answer
  • Abs(sin(x) - sin(y)) ≤ abs(x-y)
    6·1 answer
  • Find <img src="https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D" id="TexFormula1" title="\frac{dy}{dx}" alt="\frac{dy}{dx}" align
    6·2 answers
  • Round 428,213 to the nearest ten thousand
    15·1 answer
  • Round 14.0305 to the nearest hundredth<br>​
    14·1 answer
  • 226 divide by 10^0.
    15·1 answer
  • Joe buys 2 shirts for $18.50 each and a belt for $12.36. He pays tax at a rate of 5.5% on his purchase. How much tax does he pay
    5·2 answers
  • A gym has 563 people that want to attend workout classes. Each class will have 15 people.
    11·1 answer
  • The first person to answer this gets brainliest
    9·1 answer
  • A complex point of the form a 3i has a distance of 29 units from –9 24i. what is the value of a? –1 5 11 19.8
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!