1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
1 year ago
9

Find the taylor series centered at the given value of a and find the associated radius of convergence. (1) f(x) = 1 x , a = 1 (2

) f(x) = (x 2 2x)e x , a = 0
Mathematics
1 answer:
Kitty [74]1 year ago
3 0

a) The radius of convergence is calculated as

R=1.

b) Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

<h3>What is the associated radius of convergence.?</h3>

(a)

Take into consideration the function f with respect to the number a,

f(x)=\frac{1}{x}, \quad a=1

In case you forgot, the Taylor series for the function $f$ at the number a looks like this:

\begin{aligned}f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\&=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{*}(a)}{2 !}(x-a)^{2}+\ldots\end{aligned}

Determine the function f as well as any derivatives of the function $f by setting a=1 and working backward from there.

\begin{aligned}f(x) &=\frac{1}{x} & f(1)=\frac{1}{1}=1 \\\\f^{\prime}(x) &=-\frac{1}{x^{2}} &  f^{\prime}(1)=-\frac{1}{(1)^{2}}=-1 \\\\f^{\prime \prime}(x) &=\frac{2}{x^{3}} &  f^{\prime \prime}(1)=\frac{2}{(1)^{3}}=2 \\\\f^{\prime \prime}(x) &=-\frac{2 \cdot 3}{x^{4}} & f^{\prime \prime}(1)=-\frac{2 \cdot 3}{(1)^{4}}=-2 \cdot 3 \\\\f^{(*)}(x) &=\frac{2 \cdot 3 \cdot 4}{x^{5}} & f^{(n)}(1)=\frac{2 \cdot 3 \cdot 4}{(1)^{5}}=2 \cdot 3 \cdot 4\end{aligned}

At the point when a = 1, the Taylor series for the function f looks like this:

f(x) &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \\\\&=f(1)+\frac{f^{\prime}(1)}{1 !}(x-1)+\frac{f^{\prime}(1)}{2 !}(x-1)^{2}+\frac{f^{\prime \prime}(1)}{3 !}(x-1)^{3}+\cdots \\

&=1+\frac{-1}{1 !}(x-1)+\frac{2}{2 !}(x-1)^{2}+\frac{-2 \cdot 3}{3 !}(x-1)^{3}+\frac{2 \cdot 3 \cdot 4}{4 !}(x-1)^{4}+\cdots \\\\&=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}+\cdots \\\\&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

In conclusion,

&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

Find the radius of convergence by using the Ratio Test in the following manner:

\begin{aligned}L &=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\&=\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{(-1)^{n}(x-1)^{n}} \mid \\&=\lim _{n \rightarrow \infty}|x-1| \\&=|x-1|\end{aligned}

The convergence of the series when L<1, that is, |x-1|<1.

The radius of convergence is calculated as

R=1.

For B

Take into consideration the function f with respect to the number a,

a_{n}=(-1)^{n}(x-1)^{n}

f(x)=\left(x^{2}+2 x\right) e^{x},  a=0 The Taylor series for f(x)=e^{x} at a=0 is,

e^{2}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots

f(x) &=\left(x^{2}+2 x\right) e^{x} \\&=\left(x^{2}+2 x\right)\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+2 x\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right) \\&=x^{2}\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+\left(\frac{x^{4}}{2 !}+\frac{x^{5}}{3 !}+\frac{x^{6}}{4 !}+\ldots\right)+\left(2 x+2 x^{2}+\frac{2 x^{3}}{2 !}+\frac{2 x^{4}}{3 !}+\frac{2 x^{5}}{4 !}+\ldots\right) \\

&=\left(x^{2}+x^{3}+\frac{x^{4}}{2 !}\right) \\&=2 x+3 x^{2}+\left(1+\frac{2}{2 !}\right) x^{3}+\left(\frac{1}{2 !}+\frac{2}{3 !}\right) x^{4}+\left(\frac{1}{4 !}\right) x^{5}+\ldots \\&=2 x+3 x^{2}+2 x^{3}+\frac{5}{6} x^{4}+\frac{1}{4} x^{5}+\ldots

Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

Read more about convergence

brainly.com/question/15415793

#SPJ4

The complete question is attached below

You might be interested in
A blind taste test will be conducted with 9 volunteers to determine whether people can taste a difference between bottled water
Aloiza [94]

Answer:

The answer is \frac{1}{256}

Step-by-step explanation:

If we assume that people cannot taste a difference between bottled water, then the probability of identifying tap water is 0.5

Thus, P(identify tap water)=0.5

The probability that at least 8 of the 9 people identify the tap water correctly is the sum of the probabilities

  • 8 of 9 people identified correctly or
  • 9 of 9 people identified correctly

Since P(identify tap water)=0.5 each probabilities are the same and equal to

0.5^9 =\frac{1}{512}

So we have 2*\frac{1}{512} = \frac{1}{256}

6 0
3 years ago
How to multiple 90km/h x 1h 30min
sveta [45]
90 km/ h x 1.5 h = 135 km
7 0
3 years ago
Given the equation y = 2x - 8, what is the slope and the y-intercept?
aniked [119]
The answer to this is the second choice
4 0
3 years ago
Read 2 more answers
Friend of mine needs an explanation of this problem.
horsena [70]
Hope u find some help
8 0
2 years ago
What acronym is used for sine , cosine and tangent
sergejj [24]

Answer:

SOHCAHTOA.

Step-by-step explanation:

acronym is an abbreviation formed from the initial letters of other words and pronounced as a word

The acronym for sin cosine and tangent is

SOHCAHTOA

Sine =Opposite over Hypotenuse

Cosine= Adjacent over Hypotenuse

Tangent= Opposite over Adjacent

8 0
2 years ago
Other questions:
  • Question 6<br> Express this decimal as a fraction.<br> 1.21 =<br> ✓ DONE
    10·1 answer
  • A person's weekly pay is directly proportional to the number of hours worked. Mike's pay is $150 for 10 hours of work. Find the
    10·2 answers
  • What are the y values of y=2+2x/5
    13·1 answer
  • Help 10 points thx!! i will mark first person that answers branliest no joke
    14·2 answers
  • Seema bought a new pair of jeans that were on sale the original price of jeans was $56 the store had marked them down by 25% and
    9·2 answers
  • Kenji has 2500 Japanese yen. If 1 U.S. dollar equals 90.39 Japanese yen, about how many dollars can Kenji buy for his yen?
    13·2 answers
  • I need help i will give brainliest pls and also thanks
    10·2 answers
  • A man chooses a card at random from a pack of playing cards. What is the probability that the card is a diamond? Please simplify
    14·1 answer
  • What is the value of 7 in 46.897
    11·2 answers
  • A pianist charges $200 to perform at a restaurant. At the end of the night she collected her tips and left with a total earning
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!