Answer:
2Mg + O₂ ⟶ 2MgO
Explanation:
Step 1. Start with the most complicated-looking formula (O₂?).
Put a 1 in front of it.
Mg + 1O₂ ⟶ MgO
Step 2. Balance O.
We have fixed 2 O on the left. We need 2O on the right. Put a 2 in front of MgO.
Mg + 1O₂ ⟶ 2MgO
Step 3. Balance Mg.
We have fixed 2 Mg on the right-hand side. We need 2 Mg atoms on the left. Put a 2 in front of Mg.
2Mg + 1O₂ ⟶ 2MgO
Every formula now has a coefficient. The equation should be balanced. Let’s check.
<u>Atom</u> <u>On the left</u> <u>On the righ</u>t
Mg 2 2
O 2 2
All atoms are balanced.
The balanced equation is
2Mg + O₂ ⟶ 2MgO
Answer: 50.7 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of 
![\text{Number of moles}=molarity\times {\text {Volume in L]}=0.417M\times 0.528L=0.220moles](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20moles%7D%3Dmolarity%5Ctimes%20%7B%5Ctext%20%7BVolume%20in%20L%5D%7D%3D0.417M%5Ctimes%200.528L%3D0.220moles)
The balanced chemical equation is:

is the limiting reagent as it limits the formation of product and
is in excess.
According to stoichiometry :
2 moles of
give = 1 mole of 
Thus 0.220 moles of
give=
of 
Mass of 
Thus 50.7 g of
will be formed.
Answer:
6.4g
Explanation:
32g of O2 produce 36g of H2O/5.70g of O2 produce x the answer is 6.4g
Answer:
TLC is thin-layer chromatography, a chromatography technique which is used for separating the non-volatile mixtures.
Explanation:
To run a thin layer thin layer chromatography experiment with a chemical substance, begin by marking a horizontal line near the bottom of TLC plate with PENCIL. Place a SMALL spot of the substance onto the line. For the mobile phase add a small amount of SOLVENT at the bottom of TLC chamber. Place the plate in, then COVER the chamber. Once the mobile phase approaches the top of the plate, remove the plate and mark the SOLVENT line. Note the positions of the spot and calculate the Rf if needed.
A lot of heat like a lot no cap it’s gonna he a lot