Special Structures in Plant Cells. Most organelles are common to both animal and plant cells. However, plant cells also have features that animal cells do not have: a cell wall, a large central vacuole, and plastids such as chloroplasts.
Answer:

Explanation:
Hello!
In this case, since the molarity of magnesium chloride (molar mass = 95.211 g/mol) is 1.672 mol/L and we know the density of the solution, we can first compute the concentration in g/L as shown below:
![[MgCl_2]=1.672\frac{molMgCl_2}{L}*\frac{95.211gMgCl_2}{1molMgCl_2}=159.2\frac{gMgCl_2}{L}](https://tex.z-dn.net/?f=%5BMgCl_2%5D%3D1.672%5Cfrac%7BmolMgCl_2%7D%7BL%7D%2A%5Cfrac%7B95.211gMgCl_2%7D%7B1molMgCl_2%7D%3D159.2%5Cfrac%7BgMgCl_2%7D%7BL%7D)
Next, since the density of the solution is 1.137 g/mL, we can compute the concentration in g/g as shown below:
![[MgCl_2]=159.2\frac{gMgCl_2}{L}*\frac{1L}{1000mL}*\frac{1mL}{1.137g}=0.14](https://tex.z-dn.net/?f=%5BMgCl_2%5D%3D159.2%5Cfrac%7BgMgCl_2%7D%7BL%7D%2A%5Cfrac%7B1L%7D%7B1000mL%7D%2A%5Cfrac%7B1mL%7D%7B1.137g%7D%3D0.14)
Which is also the by-mass fraction and in percent it turns out:

Best regards!
The number of C2H5OH in a 3 m solution that contain 4.00kg H2O is calculate as below
M = moles of the solute/Kg of water
that is 3M = moles of solute/ 4 Kg
multiply both side by 4
moles of the solute is therefore = 12 moles
by use of Avogadro law constant
1 mole =6.02 x10^23 molecules
what about 12 moles
=12 moles/1 moles x 6.02 x10^23 = 7.224 x10^24 molecules