Answer:
The structures are attached in file.
Hydrogen bonding and intermolecular forces is the reason for ranks allotted.
Explanation:
In determining Lewis structure, we calculate the overall number of valence electrons available for bonding. Making carbon (the least electronegative atom) the central atom in the structure, we allocate valence electrons until each atom has achieved stability.
In order of decreasing affinity to water molecules:
![CO_{3}^{2-} > HCO_{3} ^{2-} > H_{2} CO_{3}](https://tex.z-dn.net/?f=CO_%7B3%7D%5E%7B2-%7D%20%20%3E%20HCO_%7B3%7D%20%5E%7B2-%7D%20%3E%20H_%7B2%7D%20CO_%7B3%7D)
This is due to the fact that the
will accept protons more readily than the bicarbonate ion,
. Carbonic acid,
will not accept any more protons, hence it is the least attractive to water molecule, even though soluble.
To find this, we will use this formula:
Molar mass of element
------------------------------------ x 100
Molar mass of compound
So, first lets calculate the mass of the compound as a whole. We use the atomic masses on the periodic table to determine this.
Ca: 40.078 g/mol
N2 (there is two nitrogens): 28.014 g/mol
O6 (there are six nitrogens: 3 times 2): 95.994 g/mol
When we add all of those numbers up together, we get 164.086. That is the molar mass for the whole compound. However, we are trying to figure out what percent of the compound oxygen makes up. From the molar mass, we know that 95.994 of the 164.086 is oxygen. Lets plug those numbers into our equation!
95.994
-----------
164.086
When we divide those two numbers, we get .585. When we multiply that by 100, we get 58.5.
So, the percent compostition of oxygen in Ca(NO3)2, or, calcium nitrate, is 58.5%.
Hello friend ☺
ΔH = MCΔT
ΔH = to the amount of energy or change in energy (J)
mass of water
C = waters specific heat capacity
ΔT = change in temperature
and so ΔH = 25 × 4.18 × ( 112-67 ) J = 4702.5 J
Thanks ❤
Hello!
Your answer is A.. Earth's core is the most dense layer and it consists of the outer core and the inner core.
Hope this helps :))
<h2>
Answer:</h2>
In <u>Combination reaction</u>, two or more elements combined to form one compound of different properties.
- C(s) + O2(g) ⇢ CO2(g).
- H2(g) + O2(g) ⇢ H20(l).
In <u>Displacement reation</u>, the high reactive element displaces the low reactive element and formed compound of different properties.
- Fe(s) + CuSo4(aq) ⇢ FeSo4(aq) + Cu(s).
- AgNO3(aq) + Cu(s) ⇢ CuNO3(aq) + Ag(s).