Answer:
Answer is Endothermic Reaction
Explanation:
Basically, melting ice is an endothermic reaction because the ice absorbs (heat) energy, which causes a change to occur.
I hope it's helpful!!
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:
Explanation:
Work done in carrying bricks
mgh
= 207 x 9.8 x 3.65
-= 7404.4 J
Work done in compressing gas
PΔV
Pressure x change in volume
1.8 x 10⁶ ΔV = 7404.4
ΔV = 7404.4 / 1.8 x 10⁶m³
= 4113.33 x 10⁻⁶ m³
= 4113.33 cc
Explanation: (I think)
Plug your values into the momentum equation.
So m1= 63kg
m2 = 10 kg
V1 = 12 m/s
And then plug in your values and solve for your unknown (v2)
The data convincingly show that wave frequency does not affect wave speed. An increase in wave frequency caused a decrease in wavelength while the wave speed remained constant. The last three trials involved the same procedure with a different rope tension.