1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
12

How can he make the cart move faster?

Physics
2 answers:
emmasim [6.3K]3 years ago
7 0
I believe the correct answer is D) He can increase the force of his push
alukav5142 [94]3 years ago
4 0
D because force increase acceleration
You might be interested in
The International Space Station (ISS) orbits Earth at an altitude of 4.08 × 105 m above the surface of the planet. At what veloc
alukav5142 [94]

This question involves the concepts of orbital velocity and orbital radius.

The orbital velocity of ISS must be "7660.25 m/s".

The orbital velocity of the ISS can be given by the following formula:

v=\sqrt{\frac{GM}{R}}

where,

v = orbital velocity = ?

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

M = Mass of Earth = 5.97 x 10²⁴ kg

R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m

R = 67.86 x 10⁵ m

Therefore,

v=\sqrt{\frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(5.97\ x\ 10^{24}\ kg)}{67.86\ x\ 10^5\ m}}

<u>v = 7660.25 m/s</u>

Learn more about orbital velocity here:

brainly.com/question/541239

3 0
2 years ago
In a nuclear physics experiment, a proton (mass 1.67×10^(−27)kg, charge +e=+1.60×10^(−19)C) is fired directly at a target nucleu
Arte-miy333 [17]

The given question is incomplete. The complete question is as follows.

In a nuclear physics experiment, a proton (mass 1.67 \times 10^(-27)kg, charge +e = +1.60 \times 10^(-19) C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed 2.50 \times 10^6 m/s. The proton comes momentarily to rest at a distance 5.31 \times 10^(-13) m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are 5.31 \times 10^{-13} m apart?

Explanation:

The given data is as follows.

Mass of proton = 1.67 \times 10^{-27} kg

Charge of proton = 1.6 \times 10^{-19} C

Speed of proton = 2.50 \times 10^{6} m/s

Distance traveled = 5.31 \times 10^{-13} m

We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.

  (K.E + P.E)_{initial} = (K.E + P.E)_{final}

 (\frac{1}{2} m_{p}v^{2}_{p}) = (\frac{kq_{p}q_{t}}{r} + 0)

where,    \frac{kq_{p}q_{t}}{r} = U = Electric potential energy

     U = (\frac{1}{2}m_{p}v^{2}_{p})

Putting the given values into the above formula as follows.

        U = (\frac{1}{2}m_{p}v^{2}_{p})

            = (\frac{1}{2} \times 1.67 \times 10^{-27} \times (2.5 \times 10^{6})^{2})

            = 5.218 \times 10^{-15} J

Therefore, we can conclude that the electric potential energy of the proton and nucleus is 5.218 \times 10^{-15} J.

4 0
3 years ago
Which of the following must be true for “P if and only if Q” to be true?
erastovalidia [21]
Explain or message me what your trying to ask!

6 0
3 years ago
.1 An 8-ft 3 tank contains air at an initial temperature of 808F and initial pressure of 100 lbf/in. 2 The tank develops a small
Alina [70]

Correct temperature is 80°F

Answer:

T_f = 38.83°F

Explanation:

We are given;

Volume; V = 8 ft³

Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²

Initial temperature; T_i = 80°F = 539.67 °R

Time for outlet flow; t_o = 90 s

Mass flow rate at outlet; m'_o = 0.03 lb/s

Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²

Now, from ideal gas equation,

Pv = RT

Where v is initial specific volume

R is ideal gas constant = 53.33 ft.lbf/°R

Thus;

v = RT/P

v_i = 53.33 × 539.67/(100 × 12²)

v_i = 2 ft³/lb

Formula for initial mass is;

m_i = V/v_i

m_i = 8/2

m_i = 4 lb

Now change in mass is given as;

Δm = m'_o × t_o

Δm = 0.03 × 90

Δm = 2.7 lb

Now,

m_f = m_i - Δm

Thus; m_f = 4 - 2.7

m_f = 1.3 lb

Similarly in above;

v_f = V/m_f

v_f = 8/1.3

v_f = 6.154 ft³/lb

Again;

Pv = RT

Thus;

T_f = P_f•v_f/R

T_f = (30 × 12² × 6.154)/53.33

T_f = 498.5°R

Converting to °F gives;

T_f = 38.83°F

7 0
3 years ago
A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V. What are (a) the total energy stored i
Debora [2.8K]

Answer:

(A) Total energy will be equal to 0.044\times 10^{-5}J

(b) Energy density will be equal to 0.0175J/m^3

Explanation:

We have given diameter of the plate d = 2 cm = 0.02 m

So area of the plate A=\pi r^2=3.14\times 0.02^2=0.001256m^2

Distance between the plates d = 0.50 mm = 0.50\times 10^{-3}m

Permitivity of free space \epsilon _0=8.85\times 10^{-12}F/m

Potential difference V =200 volt

Capacitance between the plate is equal to C=\frac{\epsilon _0A}{d}=\frac{8.85\times 10^{-12}\times 0.001256}{0.50\times 10^{-3}}=0.022\times 10^{-9}F

(a) Total energy stored in the capacitor is equal to

E=\frac{1}{2}CV^2

E=\frac{1}{2}\times 0.022\times 10^{-9}\times 200^2=0.044\times 10^{-5}J

(b) Volume will be equal to V=Ad, here A is area and d is distance between plates

V=0.001256\times 0.02=2.512\times 10^{-5}m^3

So energy density =\frac{Energy}{volume}=\frac{0.044\times 10^{-5}}{2.512\times 10^{-5}}=0.0175J/m^3

7 0
3 years ago
Other questions:
  • Help please me please
    14·1 answer
  • 25 POINTS and brainiest answer for General Science help!
    9·2 answers
  • G (where g=9.8 m/s2). If an object’s mass is m=10. kg, what is its weight?
    8·1 answer
  • If the torque required to loosen a nut that holds a wheel on a car has a magnitude of 55 n·m, what force must be exerted at the
    12·1 answer
  • A 2137 kg car moving east at 12.91 m/s collides with a 3264 kg car moving north. The cars stick together and move as a unit afte
    8·1 answer
  • En una barra de 6m que se utiliza como palanca se coloca el fulcro a 2 m de distancia del extremo derecho, como se muestra en la
    13·1 answer
  • Please help, which vector represent the force that will produce equilibrium with these two forces?
    13·1 answer
  • Determine whether a moving tennis ball and a racket held by the player have the same momentum or different momentum. If differen
    14·1 answer
  • The nearest star to our planet other than the sun , is 4.4 light year away.One light-year is the distance light travels in a yea
    6·1 answer
  • If you set up an experiment with two different independent variables, then the results would be_____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!