Answer:the initial composition of the reactants is
40cm^3 of CH4
40cm^3of H2
100cm^3 of H2O
Explanation:
Balanced reaction is
CH4 +H2+5/2O2______
CO2 +3H2O
Excess KOH at room temperature absorbs CO2 whose volume is given by 40cm^3 i.e the volume by which the solution decreases
So using Gay lussac combining ratio which states that gases combine in volumes that are in simple ratio to each other if gases.
Since CO2 in the equation is 1 mole
Means 1mole represent 40cm^3
So CH4:H2:O2 are in ratio of 1:1:5/2=(40:40:100)cm^3 respectively.
D. Small geographic range
Concentration :
196 g/L and 4 N
<h3> </h3><h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
500 cc of 2M H₂SO₄
V = 500 cc = 0.5 L
mol H₂SO₄

mass H₂SO₄ (MW = 98 g/mol)

concentration in g/L :

concentration in normality
Relationship between normality and molarity
N = M x n (n=valence , amount of H⁺ or OH⁻)
so :

Half life of a radio-active material is refereed to the time required for reducing its activity to 50 %.
Now, when I-131 passes 1st half life, it's activity will reduce to half i.e. 50%
When, I-131 passes 2nd half life, activity of I-131 will be reduced to 25%
On passing, 3rd half-life, percent activity of the I-131 <span>remaining will be 12.5 %.</span>