Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:
since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:
And the raising speed <em>v </em>of the water is given by:
where <em>q</em> is the water flow (1 cubic foot per minute).
Answer:
She can make have 30 jars with raspberries in them with 50 left over.
Explanation:
1,700 divided by 55
30 equally
but 50 left over
This means that she can make have 30 jars with raspberries in them with 50 left over.
Answer: Friction
Explanation:
Friction and the normal force would be the two initial forces to overcome.
Answer:
- The initial speed of the truck is 21.93 m/s, and the initial speed of the car is 19.524 m/s
Explanation:
We can use conservation of momentum to find the initial velocities.
Taking the unit vector pointing north and pointing east, the final velocity will be
The final linear momentum will be:
As there are not external forces, the total linear momentum must be constant.
So:
As initially the car is travelling east, and the truck is travelling north, the initial linear momentum must be
so:
so
So, for the truck
And, for the car