Answer:
The acceleration of the box is 3 m/s²
Explanation:
Given;
mass of the box, m = 12 kg
horizontal force pulling the box forward, Fx = 48 N
frictional force acting against the box in opposite direction, Fk = 12 N
The net horizontal force on the box, F = 48 N - 12 N
The net horizontal force on the box, F = 36 N
Apply Newton's second law of motion to determine the acceleration of the box;
F = ma
where;
F is the net horizontal force on the box
a is the acceleration of the box
a = F / m
a = 36 / 12
a = 3 m/s²
Therefore, the acceleration of the box is 3 m/s²
Answer:

Explanation:
Coefficients of Friction
Objects in physical contact produce friction which usually manifests as thermal energy being dissipated in the surface where the objects are interacting. It's usually harder to start to move an object from rest, that keeps moving it at a constant speed on the same surface. That is why there are two different coefficients of friction: the static and the dynamic. As mentioned, the static coefficient
is greater than the dynamic coefficient
. The car is already moving and is attempting to stop. The coefficient of friction is defined as

Where Fr is the force of friction and N is the normal or the force the road pushes back up on the car. With the given data, we have


The coefficient of friction is dimensionless (doesn't have any units)
To solve this problem it is necessary to apply the concepts given by Malus regarding the Intensity of light.
From the law of Malus intensity can be defined as

Where
Angle From vertical of the axis of the polarizing filter
Intensity of the unpolarized light
The expression for the intensity of the light after passing through the first filter is given by

Replacing we have that


Re-arrange the equation,

Re-arrange to find \theta





The value of the angle from vertical of the axis of the second polarizing filter is equal to 30.2°
Between 2 weeks and a month
Answer:
The electric field is 
Explanation:
From the question we are told that
The peak magnitude of the magnetic field is 
Generally the peak magnitude of the electric field is mathematically represented as

Where c is the speed of light with value 
So

