Answer:
The specific heat capacity of silver is 0.24 j/g.°C.
Explanation:
Given data:
Mass of sample = 55.00 g
increase of temperature ΔT= 15.0 °C
Heat absorbed = 193.9 J
Specific heat capacity of silver = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance.
ΔT = change in temperature
Now we will put the values in formula.
193.9 J = 55.00 g × c ×15.0 °C
193.9 J = 825 g.°C × c
c = 193.9 J / 825 g.°C
c= 0.24 /g.°C
The specific heat capacity of silver is 0.24 j/g.°C.
Answer:
The correct answer is "two".
Explanation:
The main bondings that has an effect in a Lewis structure in NO2Cl are the double bondings occurring between the Oxygen atoms and the Nitrogen atom. Since the NO2Cl compound has two oxygen atoms attached to the nitrogen atom, two equivalent lewis structures will be necessary to describe it. I attached an example of two equivalent Lewis structure corresponding to a NO2 molecule.
A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a <span>large dipole moment. However, because one dipole points to the left and the other to the right the dipole is cancelled.</span>
A. Waves carry energy toward the energy source through space or through matter, and the matter moves with the energy
Answer:
10nm
Explanation:
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency of approximately 30 PHz) to 400 nm (750 THz), shorter than that of visible light but longer than X-rays.