Explanation:
Wave is defined as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium.
The velocity of wave is equal to the product of its wavelength and frequency (number of vibrations per second). Longitudinal waves like sound waves travel through a medium.
Therefore, a wave move from a layer of high velocity to that of a lower velocity the wavelength changes (that is, decreases) as it moves.
Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
The answer would be the sound waves.
Answer:
The speed traveled by the car is 40 meter per second.
Explanation:
The formula for the relation between the power and the force is as follows:
P = Fv
Where F is the force and v is the speed.
As given
To travel at constant speed, a car engine provides 24KW of useful power. The driving force on the car is 600N.
F = 600 N
Convert power from KW to W.
1 KW = 1000 W
24 KW = 24 × 1000 W
= 24000 W
Thus
P = 24000 W
Put these values in the formula.
24000 = 600 × v
24000 = 600v

v = 40 meter per second .
Therefore the speed of the car is 40 meter per second .