Answer: the 30gram will hit the ground first
Explanation:the 30gram bullet will hit the ground first because it is fired
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
When it comes to optics, Snell's law is the basic formula to be used. If you notice, when light hits the water, the light does not travel in the same direction. After, it hits the water, it changes in angle. Light becomes refracted. This is observed when your hands tend to become bigger if you place it underwater. The formula for Snell's Law is
n₁ sin θ₁ = n₂sin θ₂, where n is the index of refraction. This depends on the type of medium. For example, for air, n=1. The parameters θ₁ is the angle of incidence, and θ₂ is the angle of refraction. Critical angle is the incident angle needed so that the refract angle is 90°. So, modifying the equation:
n₁ sin θcrit = n₂sin 90°, since sin 90°=1,
sin θcrit = n₂/n₁
θcrit = sin ⁻¹ (n₂/n₁)
Since liquid comes first before glass, n₁=1.75 and n₂=1.52. Substituting,
θcrit = sin ⁻¹ (1.52/1.75)
θcrit = 60.29°
Potential energy = mgh
Potential energy = 10 x 9.8 x 1.3
Potential energy = 127.4 J