Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
The tension in the string when the ball is at the bottom of the path is 2.61 Newtons.
<h3>Tension</h3>
A tension is simply referred to as a force along the length of a flexible medium such as strings, cable, ropes etc.
Tension in a string revolving can be determined using the expression;
T = mv² / r
Where m is mass of object, v is velocity and r is radius ( length of string )
Given the data in the question;
- Radius ( length of string ) r = 97.7cm = 0.977m
- Tension in the string; T = ?
To determine tension in the string, we substitute our given values into the expression above.
T = mv² / r
T = (0.182kg × (3.74m/s)²) / 0.977m
T = (0.182kg × 13.9876m²/s²) / 0.977m
T = (2.5457432kgm²/s²) / 0.977m
T = 2.61kgm/s²
T = 2.61N
Therefore, the tension in the string when the ball is at the bottom of the path is 2.61 Newtons.
Learn more about Tension here: brainly.com/question/14351325
The absolute refractive index is equal to the speed of light of the wave in air divided by the speed of light in the second medium. This means that it is equal to 3 x10^8 / 1.71 x10^8. This means the answer is 1.75
<span>Like most Earth materials, rocks are created and destroyed in cycles. The rock cycle is a model that describes the formation, breakdown, and reformation of a rock as a result of sedimentary, igneous, and metamorphic processes. </span><span>All rocks are made up of minerals. A mineral is defined as a naturally occurring, crystalline solid of definite chemical composition and a characteristic crystal structure. A rock is any naturally formed, nonliving, firm, and coherent aggregate mass of solid matter that constitutes part of a planet. i don't know if this is right but i hope it helps</span>