<span>Taking into account the information above, we know the average mass of the bucket of water may be m=20-5/2=17.5kg. As the bucket of water is pulled at a "constant velocity" the work required to raise the bucket to the platform transformed into the potential energy of the bucket of water. That is why it should be W=mgh=17.5*9.8*40=6860J</span>
There are approximately two hundred and twenty-five point seven five calories from using 945 j of heat
A: 225.75
If you put 300 J of heat into an engine with an efficiency of 0.35, how much work can be done? 3. How much energy must be put into an engine with an efficiency of 0.6 if 270 J of work are required? 4. An engine with an efficiency of 0.425 uses 1200 J of energy. Find the amount of energy wasted by the engine. 5. Calculate the efficiency of an engine operating between temperatures of 258 K and 600 K 6. An engine runs with its exhaust (cold) reservoir at a temperature of 200 K. To what temperature should the input (hot) temperature be set if an efficiency of 0.8 is desired? 7. Complete the following table of temperatures. Fahrenheit Celsius Kelvin 213 15 98.6 75 408