(a) 8927 mi/h
In order to calculate the average speed, we need to convert the time (t=5.0 y) into hours first. In 1 year, we have 365 days, each day consisting of 24 hours, so the time taken is:

The distance covered by the spacecraft is

Therefore, the average speed is just the ratio between the distance covered and the time taken:

(b) 35 minutes (2097 seconds)
The transmitted signals (which is a radio wave, which is an electromagnetic wave) travels back to the Earth at the speed of light:

Since 1 miles = 1609 metres, the distance covered by the signal is

So, the time taken by the signal will be

And since 1 minute = 60 sec, the time taken is

Answer:
<em>Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.</em>
Explanation:
<u>Potential and Kinetic Energy</u>
The gravitational potential energy is the energy an object has due to its height above the ground. The formula is

Where:
m = mass of the object
g = acceleration of gravity (9.8~m/s^2)
h = height
Note we can also use the object's weight W=mg into the formula:

The kinetic energy is the energy an object has due to its speed:

Where v is the object's speed.
Initially, the object has no kinetic energy because it's assumed at rest.
The W=30 N rock falls from a height of h=40 m, thus:

Since the sum of the kinetic and potential energies is constant:
U' + K' = 1,200 J
Here, U' and K' are the energies at any point of the motion. Since both must be the same:
U' = K' = 600 J
U'=Wh'=600
Solving for h':

Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.
You'll get destructive interference if both waves are the same frequency but the peaks of one wave overlap the troughs of the other wave.
That can only happen if one wave has to travel (1/2 wavelength) farther than the other one to reach your ears. So we want to find the lowest frequency for which 52 cm is 1/2 of a wavelength ... the wavelength is 104 cm.
Frequency = (speed) / (wavelength)
Frequency = (344 m/s) / (104 cm)
Frequency = (344 m/s) / (1.04 meter)
Frequency = (344 / 1.04) per second
Frequency = 330.8 Hz .
Well since we're doing the Lewis dot diagram do you know which element on the table that it is?