I believe 4(x - 3)=32 could help I haven’t done an equation from the unit in months so hopefully that looks familiar to you.
Answer:
-11
Step-by-step explanation:
-14+3=-11
Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
Answer:
11375 / 1000
Hope This Helps! Have A Nice Day!!