Answer:
4Ba(CO3) -> 4BaO2 + 2CO2
Explanation:
I looked at the oxygens to balance this. Ba(CO3) normally has 3 oxygens. BaO2 and CO2 have 4 oxygens total. The common multiple of 3 & 4 is 12. So there should be 12 oxygens on both sides. Then I just found the coefficients that would give 12 oxygens on both sides and can balance the rest of the atoms.
Answer:
I don't <u>understand</u><u> </u><u>your</u><u> </u><u>question</u><u> </u>
Upper N upper H subscript 4 upper C l (s) right and left arrows stacked above each other upper N upper H subscript 3 (g) plus upper H upper C l (g)
Explanation:
The given equation is;
NH₄Cl ⇄ NH₃ + HCl
This equation is clearly different from the other ones.
- In the reactant going forward, there is a right and left arrows stacked above each other.
- The symbol is ⇄ and it is used to show reversibility of chemical reactions.
learn more:
Chemical reactions brainly.com/question/3953793
#learnwithBrainly
Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>
Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:

