If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .
Answer: the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Explanation:
Given that;
diameter of the mirror d = 1.7 m
height h = 180 km = 180 × 10³ m
wavelength λ = 500 nm = 5 × 10⁻⁹ m
Now Angular separation from the peak of the central maximum is expressed as;
sin∅= 1.22 λ / d
sin∅ = (1.22 × 5 × 10⁻⁹) / 1.7
sin∅ = 3.588 × 10⁻⁷
we know that;
sin∅ = object separation / distance from telescope
object separation =
sin∅ × distance from telescope
object separation = 3.588 × 10⁻⁷ × 180 × 10³
object separation =6.45 × 10⁻² m
then we convert to centimeter
object separation = 6.45 cm
Therefore the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
The stress that can cause on the anticline , is the Compression
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
Some properties I know are
melting point<span>
, </span>
boiling point<span>
, and index of </span>
refraction<span>.</span>