1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
2 years ago
10

A 30-cm-diameter, 4-m-high cylindrical column of a house made of concrete ( k = 0.79 W/m⋅K, α = 5.94 × 10 −7 m2/s, rho = 1600kg

/ m 3 , and c p = 0.84kJ/kg⋅K ) cooled to 14° C during a cold night is heated again during the day by being exposed to ambient air at an average temperature of 28° C with an aver-age heat transfer coefficient of 14 W/ m 2 ⋅K. Using the analyti-cal one-term approximation method, determine (a) how long it will take for the column surface temperature to rise to 27° C, (b) the amount of heat transfer until the center temperature reaches to 28° C, and (c) the amount of heat transfer until the surface temperature reaches 27° C.
Physics
1 answer:
PilotLPTM [1.2K]2 years ago
6 0

Answer:

a) Time it will taken for the column surface temperature to rise to 27°C is  

17.1 hours

b) Amount of heat transfer is 5320 kJ  

c) Amount of heat transfer until the surface temperature reaches 27°C is 4660 kJ

Explanation:

Given that;

Diameter D = 30 cm

Height H = 4m

heat transfer coeff h = 14 W/m².°C

thermal conductivity k = 0.79 W/m.°C

thermal diffusivity α  = 5.94 × 10⁻⁷ m²/s

Density p = 1600 kh/m³

specific heat Cp = 0.84 Kj/kg.°C

a)

the Biot number is

Bi = hr₀ / k

we substitute

Bi = (14 W/m².°C × 0.15m) / 0.79 W/m.°C

Bi = 2.658

From the coefficient for one term approximate of transient one dimensional heat conduction The constants λ₁ and A₁ corresponding to this Biot number are,  

λ₁ = 1.7240

A₁ = 1.3915

Once the constant J₀ = 0.3841 is determined from corresponding to the constant λ₁

the Fourier number is determined to be  

[ T(r₀, t) -T∞ ] / [ Ti - T∞]  = A₁e^(-λ₁²t') J₀ (λ₁r₀ / r₀)

(27 - 28) / (14 - 28)   = (1.3915)e^-(17240)²t (0.3841)  

t' = 0.6771

Which is above the value of 0.2. Therefore, the one-term approximate solution (or the transient temperature charts) can be used. Then the time it will take for the column surface temperature to rise to 27°C becomes  

t =  t'r₀² / ₐ

= (0.6771 × 0.15 m)² /  (5.94 x 10⁻⁷ m²/s)

= 23,650 s

= 7.1 hours

Time it will taken for the column surface temperature to rise to 27°C is  

17.1 hours

b)

The heat transfer to the column will stop when the center temperature of column reaches to the ambient temperature, which is 28°C.  

Maximum heat transfer between the ambient air and the column is

m = pV

= pπr₀²L

= (1600 kg/m³ × π × (0.15 m)² × (4 m)

= 452.389 kg

Qin = mCp [T∞ - Ti ]

= (452.389 kg) (0.84 kJ/kg.°C) (28 - 14)°C

= 5320 kJ  

Amount of heat transfer is 5320 kJ  

(c)

the amount of heat transfer until the surface temperature reaches to 27°C is

(T(0,t) - T∞) / Ti - T∞  = A₁e^(-λ₁²t')

= (1.3915)e^-(1.7240)² (0.6771)

= 0.1860

Once the constant J₁ = 0.5787 is determined from Table corresponding to the constant λ₁, the amount of heat transfer becomes  

(Q/Qmax)cyl = 1 - 2((T₀ - T∞) / ( Ti - T∞)) ((J₁(λ₁)) / λ₁)

= 1 - 2 × 0.1860 × (0.5787  / 1.7240)  

= 0.875

Q = 0.875Qmax

Q = 0.875(5320 kJ)  

Q = 4660 kJ

Amount of heat transfer until the surface temperature reaches 27°C is 4660 kJ

You might be interested in
804 n of force are applied to a 51.7 kg. What is the acceleration that the object experiences?
Andreyy89

We can use Newton II here  (where F=m*a), that F is the net (or resultant) force on the object, m is the mass of the object and a is the acceleration the object experiences.

This means, in this case there would be no friction and absolutely no other force which gives a component in the plane of motion, only then can you assume that F=804N.

Now using F= m*a

804 = 51.7*a

Therefore a = 804/51.7 = 15.55 m/s²


7 0
2 years ago
A plastic cup weighing 100 g floats on water so that 1/4 of the volume of the cup is immersed in water. How much volume of oil c
k0ka [10]

Answer:

Any floating object displaces a volume of water equal in weight to the object's MASS. ... If you place water and an ice cube in a cup so that the cup is entirely full to the ... If you take a one pound bottle of water and freeze it, it will still weigh one ... Fresh, liquid water has a density of 1 gram per cubic centimeter (1g = 1cm^3, ...

5 0
2 years ago
Help me asap its due today
Margaret [11]

Answer:

3.54* 10^{22} N

Explanation:

Using the formula you gave:

F_g = \frac{6.67*10^{-11}*2.0*10^{30}*5.97^{24}  }{(1.5*10^{11})^2 }

3 0
3 years ago
Describe the main differences between the composition of Earth and that of the Sun.
kakasveta [241]

Answer: The earth is comprised of silicate materials as well as metals. The amount of gas is less here because of its location near to the sun. Due to its relative high surface temperature, the gases such as hydrogen and helium gets evaporated and disappears.

Whereas the sun is entirely comprised of hydrogen and helium gas, of which hydrogen is the dominant one. It has an extremely high temperature of about 5500°C.

6 0
2 years ago
If the torque required to loosen a nut that
liraira [26]

Explanation:

τ = Fr

34 Nm = F (0.30 m)

F ≈ 113 N

7 0
2 years ago
Other questions:
  • Where does a phase change occur
    14·2 answers
  • Explain what cell theory is. Describe the history behind cell theory and the
    10·1 answer
  • A 5.0-kg crate is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.5, what
    11·1 answer
  • The liquid mercury in a thermometer expands as it is heated. this is a...
    5·2 answers
  • An astronomer would most likely use parallax to
    13·1 answer
  • If the sun, Earth and moon are lined up as shown as above, the Earth
    8·1 answer
  • A horizontal spring is attached to the wall on one end and to a mass on the other end. The mass can slide freely on a frictionle
    11·1 answer
  • 9.In a perfectly elastic collision, a 0.400 kg ball moving toward the east at 3.7 m/s suddenly
    9·1 answer
  • Assume that a vaulter is able to carry a vaulting pole while running as fast as Carl Lewis in his world record 100-m dash (aroun
    13·1 answer
  • 22. Cindy created a solenoid by coiling a copper wire and attaching it to a battery.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!