Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|= 
|v|=
= 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.
Answer:
∴ [T]=[WF−1V−1]
Hope this answer is right!!
Answer:
30 miles
Explanation:
<u>Step 1:</u>
Divide -> 45/60= .75 miles/minute
<u>Step 2:</u>
Multiply -> .75 x 40= 30
Answer:
a

b

Explanation:
From the question we are told that
The pressure of the water in the pipe is
The speed of the water is 
The original area of the pipe is
The new area of the pipe is
Generally the continuity equation is mathematically represented as

Here
is the new velocity
So

=> 
=> 
=> 
=> 
Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the Bernoulli's equation for constant height to calculate the pressure
This is mathematically represented as

Here
is the density of water with value
![P_2 = P_1 + \frac{1}{2} * \rho [ v_1^2 - v_2^2 ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20P_1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Crho%20%5B%20v_1%5E2%20-%20v_2%5E2%20%5D)
=> ![P_2 = 110 *10^{3} + \frac{1}{2} * 1000 * [ 1.4 ^2 - 5.6 ^2 ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20110%20%2A10%5E%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20%201000%20%2A%20%20%5B%201.4%20%5E2%20-%205.6%20%5E2%20%5D)
=> 
<span>Suppose you mixed two chemicals in the lab until you could not tell the two apart. After some time passed, a white powder formed which would not dissolve, and settled on the bottom. The mixture was first homogeneous then heterogeneous. </span>