Answer:
No. The protostellar cloud spins faster in the collapsing stage (stage 1) and becomes much slower in the contraction stage (stage 2)
Explanation:
Once the cloud is so dense that the heat which is being produced in its center cannot easily escape, pressure rapidly rises, and catches up with the weight, or whatever external force is causing the cloud to collapse, and the cloud becomes stable, as a protostellar cloud.
The protostellar cloud will become more dense over thousands of years. This stage of decreasing size is known as a contraction, rather than a collapse. In the contraction stage the cloud has become much slower, and because weight and pressure are more or less in balance. In the first stage of formation, the decrease of size is very rapid, and compressive forces completely overwhelm the pressure of the gas, and we say that the cloud is collapsing.
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Answer:
true
Explanation:
it is concave when it diverging
Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
----------------------(1)
---------(2)
----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)


s
Substituting (6) in (1):
-------------------(4)
Step 2: Finding
:
From equation(4)


m/s (8)
Substituting
in (3):
v =42 .01 - 15.3566
V=26.359 m/s
Explanation:
(D) i think there you go have a good day