Answer:
The answer depends on what object you are dropping. Are you dropping a balloon or a car? (I'm joking 'bout that one.) If the mass of the object is very little, then it might drop slower. If the mass is bigger, then it might drop faster.
Good luck!
Explanation:
I believe the answer is D. <span>The hypothesis is revised and another experiment is conducted.</span>
Hello there.
<span>If we increase the force applied to an object and all other factors remain the same that amount of work will
</span><span>C. Increase
</span>
Traveling against currents usually takes longer. Kinda like walking against the wind, you feel the heaviness against your jacket as you push through it. Where when you walking with the wind, it kind of gives your a push. Same for with currents.
I believe this is what you have to do:
The force between a mass M and a point mass m is represented by

So lets compare it to the original force before it doubles, it would just be the exact formula so lets call that F₁
So F₁ = G(Mm/r^2)
Now the distance has doubled so lets account for this in F₂:
F₂ = G(Mm/(2r)^2)
Now square the 2 that gives you four and we can pull that out in front to give
F₂ =
G(Mm/r^2)
Now we can replace G(Mm/r^2) with F₁ as that is the value of the force before alterations
now we see that:
F₂ =
F₁
So the second force will be 0.25 (1/4) x 1600 or 400 N.