Given:
The number of cycles is, <em>n</em> (s) = 7.
The number of wheels in the cycle is, <em>n </em>(sw) = 2.
The number of cars is, <em>n</em> (c) = 15.
The number of wheels in the car is, <em>n</em> (cw) = 4.
The obective is to find the total number of wheels.
The total number of wheels is,
![\begin{gathered} T=n(sw)\cdot n(s)+n(cw)\cdot n(c) \\ =2\cdot7+4\cdot15 \\ =14+60 \\ =74\text{ whe}els \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%3Dn%28sw%29%5Ccdot%20n%28s%29%2Bn%28cw%29%5Ccdot%20n%28c%29%20%5C%5C%20%3D2%5Ccdot7%2B4%5Ccdot15%20%5C%5C%20%3D14%2B60%20%5C%5C%20%3D74%5Ctext%7B%20whe%7Dels%20%5Cend%7Bgathered%7D)
Hence, there are 74 wheels in the block.
If there are <em>x</em> bicycles and <em>y </em>cars, the equatioin will be,
![\begin{gathered} T=n(sw)\cdot x+n(ce)\cdot15 \\ T=2x+4x \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%3Dn%28sw%29%5Ccdot%20x%2Bn%28ce%29%5Ccdot15%20%5C%5C%20T%3D2x%2B4x%20%5Cend%7Bgathered%7D)
Hence, the number of wheels for x bicycles and y cars is 2x+4x.