Given :-
- y varies directly as x, and y=14 when x=4.
To Find :-
- the value of y when x=9 .
Solution :-
<u>A</u><u>c</u><u>c</u><u>o</u><u>r</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>o</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>,</u>
<u>When</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>1</u><u>4</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>4</u><u> </u><u>,</u>
<u>W</u><u>h</u><u>e</u><u>n</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>,</u>
- y = 7/2*9
- y = 63/2
- y = 31.5
Answer:
d=13988 or d=1.3988 x 10^4
Step-by-step explanation:
d=(-8)^2+(-118)^2
d=64+13924
d=13988
Check the forward differences of the sequence.
If , then let be the sequence of first-order differences of . That is, for n ≥ 1,
so that .
Let be the sequence of differences of ,
and we see that this is a constant sequence, . In other words, is an arithmetic sequence with common difference between terms of 2. That is,
and we can solve for in terms of :
and so on down to
We solve for in the same way.
Then
and so on down to
Answer:
what are the answer options?
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given
there are six integers to win a lottery
case-1 Integer not exceeding 40
no of ways to choose 6 incorrect numbers
Case-2 no of ways to choose 6 incorrect numbers out of 48 integers
Case-3 no of ways to choose 6 incorrect numbers out of 56 integers
Cae-4 no of ways to choose 6 incorrect numbers out of 64 integers