Answer: N = 2.78 × 10^23 atoms
There are N = 2.78 × 10^23 atoms in 70g of Au2cl6
Completed Question:
Calculate the number of gold atoms in a 70g sample of gold(III) chloride . Be sure your answer has a unit symbol if necessary, and round it to significant digits
Explanation:
Given:
Molar mass of Au2cl6 = 303.33g/mol
Mass of Au2cl6 = 70g
Number of moles of Au2cl6 = 70g/303.33g/mol = 0.231mol
According to the chemical formula of Au2cl6,
1 mole of Au2cl6 contains 2 moles of Au
Number of moles of Au = 2 × 0.231mol = 0.462mole
There are 6.022 × 10^23 atoms in 1 mole of an element.
Number of Atom of gold in 0.462 mole of gold is:
N = 0.462 mol × 6.022 × 10^23 atoms/mol
N = 2.78 × 10^23 atoms
The water cycle regardless if it is in a lake, our bodies, food, or underground.
Answer:
There are four laws of thermodynamics that define fundamental physical quantities (temperature, energy, and entropy) and that characterize thermodynamic systems at thermal equilibrium.
Explanation:
Answer:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Explanation:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation
⁴₆C → ¹⁴₇N + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
Answer:
14/6
Explanation:
U 2 can help me by marking as brainliest........