Answer:
Normalidad = 4N
%p/V = 27.6%
Explanation:
La solución 2M de carbonato de potasio contiene 2moles de carbonato por litro de solución. La normalidad son los equivalente de carbonato de potasio (2eq/mol) por litro de solución:
2moles * (2eq/mol) = 4eq / 1L = 4N
El porcentaje peso volumen es el peso de carbonato en gramos dividido en el volumen en mL por 100:
%p/V:
Masa K2CO3 -Masa molar: 138.205g/mol-
2moles * (138.205g/mol) = 276g K2CO3
Volumen:
1L * (1000mL/1L) = 1000mL
%p/V:
276g K2CO3 / 1000mL * 100
<h3>%p/V = 27.6%</h3>
Answer:
2p
Explanation:
it has 3 dumbell shapes, hence p
you can't determine the principal quantum number by looking at the shape, however bigger or spread orbital means higher value of n
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135
<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol