now one denominator is x^2 + 8x + 15
if we factorise then (x +3)(x +5)
now in expressions which have like x+3 as denominator ...you multiply and divide them by x+5 and once u get denominator equal you can add numerator easily
This is what it is asking. There can be also other numbers above. These are just the basic numbers for tenths.
The sum of the geometric series is 2199; option E.
- The 36th term of the arithmetic series is -60.5 option C
- The sum of the arithmetic series is 2547; option E
- The missing geometric sequence are; 1.614375, 3.30946875, 6.7844109375. option E
<h3>Arithmetic and Geometric series</h3>
S6 = a(rⁿ - 1) / r -1
= 1468(1/3^6 - 1) / (1/3 - 1)
= 1468(0.00137174211248 - 1) / -2/3
= 1468(-0.9986282578875) / -0.66666666666666
= -1,465.98628257885 / -0.66666666666666
= 2198.97942386829
Approximately,
S6 = 2199
Arithmetic series
Sn = n/2{2a + (n -1)d}
= 36/2 {2×27 + (36-1)-5/2}
= 18{54 + (35)-5/2}
= 18(54 + 175/2)
= 18(54 + 87.5)
= 18(141.5)
s36 = 2547
a36 = a + (n - 1) d
= 27 + (36 - 1)-5/2
= 27 + (35)-5/2
=27 + -175/2
= 27 - 87.5
= -60.5
S20 = n/2{2a + (n -1)d}
= 20/2{2×27 + (20-1)-5}
= 10(54 + (19)-5)
= 10{54 + (-95)}
= 10(54-95)
= 10(-41)
s20 = -410
Missing terms of the geometric sequence:
nth term = ar^n-1
448/135 = 63/80×r^(6-1)
448/135 = 63/80×r^5
r^5 = 448/135 ÷ 63/80
= 448/135 × 80/63
= 35,840/8,505
r = 5√35,840/5√8505
= 946.57/461.11
r = 2.05
Second term = a×r
= 63/80×2.05
= 1.614375
Third term = ar²
= 63/80×2.05²
= 63/80×4.2025
= 3.30946875
Fourth term = 63/80 × 2.05³
= 63/80×8.615125
= 6.7844109375
Therefore, none of these are correct
Learn more about sum of geometric series:
brainly.com/question/24643676
#SPJ1
I only found 4 ways, hope this helps
-2bc=12-3ab
c=(3ab-12)/(2b)