Answer : When we consider the atmospheric pressure as 1 atm then according to the ideal gas equation we can find out the molar mass of any unknown by this formula ;
PV=nRT
so if the pressure increases than 1 atm then we can see from the above equation that it will result in greater value for the number of moles (n) in the above equation.
While n = m/M where m is mass of the unknown in g and M is molecular mass.
So, if pressure is higher then it will result in molar mass of unknown which is much smaller.
Answer is "sucrose".
Polymer is a large molecule which is made from repeating units. The smallest repeating unit is called as monomer. <span>Polystyrene, nylon and PVC are examples for polymers. But sucrose is a disaccharide which is made from glucose and fructose. Hence, sucrose is not an example of polymer. </span>
Answer:
See explanation and image attached
Explanation:
The reaction of bromine molecule with an alkene passes through a bridged intermediate known as the brominium ion.
It is a cyclic intermediate that contains a positively charged bromine ion as i have shown in the image attached.
The brominium ion is first formed during the bromininaton of alkenes.
<span>0.0797 g
Looking at the formula, 1 mole of KIO3 and 5 moles of KI will react and produce moles of iodine molecules or 6 moles of iodine atoms. So first, determine the number of moles of KIO3 and KI provided
moles KIO3 = 0.0121 * 0.097 = 0.0011737 mol
moles KI = 0.0308 * 0.017 = 0.0005236 mol
The limiting reactant is KI at 0.0005236 mol so divide by 5 and multiply by 6 to get the number of moles of iodine atoms.
0.0005236 / 5 * 6 = 0.00062832 mol
Lookup the atomic weight of iodine which is 126.90447
And multiply that by the number of moles of iodine produced
126.90447 g/mol * 0.00062832 mol = 0.079736617 g
Rounding to 4 decimal places gives 0.0797 g</span>