These could all go either way, hardness and other special properties are what I'm guessing would be the most accurate in determining the kind of material.
luster, cleavage, streak, and color can all be affected by other factors. but I guess cleavage would also be accurate. so I guess hardness special properties and cleavage would be the most reliable.
Answer:
mass of S₈ = 96.1146 grams
Explanation:
The balanced equation that describe the reaction is as follows:
8 Fe + S₈ ..............> 8 FeS
From the equation, we can note that:
8 moles of Fe react with 1 mole of S₈
This means that:
8 * 55.8 grams of iron react with 8 * 32 grams of S₈.
To know the mass of S₈ that will react with 167.6 grams of Fe, we will simply do cross multiplication as follows:
mass of S₈ = (167.6 * 8 * 32) / (8 * 55.8)
mass of S₈ = 96.1146 grams
Hope this helps :)
Explanation:
1. Democritus proposes the existence of atoms
2. Dalton's atomic theory
3. J. J. Thomson discovers the electron
4. Rutherford's gold foil experiment
5. Bohr model
6. Schrödinger's Wave Mechanics model of the atom
The first idea about matter containing atoms dates back to Greek philosophers. One of them was Democritus .
In 1808 Dalton put forward his atomic theory
In 1897 J.J Thomson discovered cathode rays using his gas discharge tube experiment.
In 1911, Ernest Rutherford proposed the nuclear model of the atom using experiments on the gold foil.
Neils Bohr in 1913 suggested his own atomic model
Erwin Schrodinger formulated the wave equation of electrons
Learn more;
Dalton atomic theory brainly.com/question/1979129
Rutherford gold foil experiment brainly.com/question/1859083
#learnwithBrainly
Answer:
5 g
Explanation:
The heat required to vaporize ice is the sum of
i) Heat required to melt ice at 0°C
ii) Heat required to raise the temperature from 0°C to 100°C
iii) Heat required to vaporize water at 100°C
Thus;
H = nLfus + ncθ + nLvap
H= n(Lfus + cθ + Lvap)
Lfus = 6.01 kJ/mol
Lvap = 41 kJ/mol
c = 75.38
n =?
2100 = n(6.01 + 75.38(100) + 41)
n = 2100 KJ/7585.01 kJ/mol
n = 0.277 moles
Mass of water = number of moles * molar mass
Mass of water = 0.277 moles * 18 g/mol
Mass of water = 5 g
Ok thanks for the valuble info.