The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
Answer:
65.2L
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in this question,
P = 1.631 atm
V = ?
n = 4.3 moles
T = 28°C = 28 + 273 = 301K
Using PV = nRT
V = nRT/P
V = 4.3 × 0.0821 × 301 ÷ 1.631
V = 106.26 ÷ 1.631
V = 65.15
Volume of the gas = 65.2L
The volume of base required to completely neutralize the acid is 3.2 mL of NaOH.
The equation of the reaction is;
2NaOH(aq) + H2SO4(aq) -----> Na2SO4(aq) + 2H2O(l)
From the question;
Concentration of acid CA = 0.426M
Concentration of base CB = 2.658M
Volume of acid VA = 10.00mL
Volume of base VB = ?
Number of moles of acid NA = 1
Number of moles of base NB = 2
Using the relation;
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
VB = CAVANB/CBNA
VB = 0.426M × 10.00mL × 2/ 2.658M × 1
VB = 3.2 mL
Learn more: brainly.com/question/6111443
Answer:
chemical symbol= Cl ( chlorine)
electrons= 17
2p electrons = 6