Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
Answer:
2 tall 2 short.
Explanation:
If 1 is tall, and 1 is short, 50% would be tall, and the other 50% would be short.
Gasoline, kerosene, and lighter fluid.
Answer: im thinking its gonna be d.C2H6 and also
the explanation is on the research i had did before i had answered this question so i really hope this help :)
Explanation:
Ar = van de waals forces or london forces
C
H
4
= van de waals forces or london forces
HCl=permanent dipole-dipole interactions
CO = permanent dipole-dipole interactions
HF = hydrogen bonding
N
a
N
O
3
= permanent dipole-dipole interactions
C
a
C
l
2
= van de waals forces or london forces