Answer:

Explanation:
We have the reactions:
A: 
B: 
Our <u>target reaction</u> is:

We have
as a reactive in the target reaction and
is present in A reaction but in the products side. So we have to<u> flip reaction A</u>.
A: 
Then if we add reactions A and B we can obtain the target reaction, so:
A: 
B: 
For the <u>final Kc value</u>, we have to keep in mind that when we have to <u>add chemical reactions</u> the total Kc value would be the <u>multiplication</u> of the Kc values in the previous reactions.


Answer:
1)
Explanation:
the answer to you question Is 1)
Answer:
balanced in ACID not BASE
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Answer
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Explanation:
Cr2O7^2-(aq) + Hg(l) ----> Hg^2+(aqH) + Cr^3+(aq)
add H^1+ (acid) to capture the O and make 7 water molecules
Cr2O7^2-(aq) + Hg(l) + H^1+ ----> Hg^2+(aqH) + Cr^3+(aq) + 7H2O
Cr goes from +6 to +3 by gaining 3 e
Hg goes from 0 to +2 by losing 2 e
we need 3 Hg for every 2 Cr
so
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
2 Cr on the right and left
Net 12 positive charges on the right and the left
3 Hg on the right and left
14 H on the right and left
the equation is balanced
we cannot balance the equation in a basic solution with OH^1-
we have plenty of O in the dichromate ion. we need to convert it to water which take free H^1+ from the acid
When you are converting grams to moles, the operation that you will be doing is dividing by the molar mass to obtain the amount of moles of the given sample.
D. How the pull of gravity has changed.