Answer:
1) The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
2) The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt = 0.045 mol/L.s.
Explanation:
<em>3NO(g) → N₂O(g) + NO₂(g).</em>
The rate of the reaction = -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt = Δ[NO₂]/Δt.
Given that: Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>1) The rate of the overall reaction is?</em>
The rate of the overall reaction = Δ[N₂O]/Δt = 0.015 mol/L.s.
<em>2) The rate of change for NO is?</em>
The rate of change for NO = - Δ[NO]/Δt.
∵ -1/3 Δ[NO]/Δt = Δ[N₂O]/Δt.
<em>∴ The rate of change for NO = - Δ[NO]/Δt = 3 Δ[N₂O]/Δt </em>= 3(0.015 mol/L.s) = <em>0.045 mol/L.s.</em>
Answer:- Molar mass of
.
Solution:- It is a stoichiometry problem. Mass of the grill is 30.0 kg and the mass after burning the grill is also 30.0 kg. It means all the charcol is burned and the gas is given off.
2.0 kg of charcol are converted to grams which is 2000 g. Since charcol is pure solid carbon, the grams are divided by the atomic mass of carbon which is 12.
The combustion equation of charcol is written as:

From this balanced equation, there is 1:1 mol ratio between charcol and carbon dioxide. So, the moles of carbon dioxide gas formed are equivalent to the moles of charcol. To convert the moles of carbon dioxide to grams we multiply the moles by it's molar mass.
Carbon dioxide has one carbon and two oxygen atoms so it's molar mass = 12 + 2(16) = 12 + 32 = 44
So, 44 is the molar mass of carbon dioxide and above calculations clearly shows how and where we get this.
Answer:
Explanation:
IT'S FOR NOW, PLEASE DELIVER IT TODAY !!! I NEED HELP IT'S CHEMICAL WORK...
Answer:
hmmmm
Explanation: Balance the reaction of KOH + H3PO4 = K3PO4 + H2O using this chemical equation balancer!