A fluorine atom has seven valence electrons. ... Carbon will then have five valence electrons (its four and the one its sharing with fluorine). Covalently sharing two electrons is also known as a “single bond.” Carbon will have to form four single bonds with four different fluorine atoms to fill its octet.
Answer:
the solubility of CaCO3 is 0.015g/l 25 °C
is favored at equilibrium
Explanation:
The Ksp of calcium carbonate in water at 25 °C is 2.25 x 10-8. CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq) What is favored at equilibrium?
solubility is the property of a solute to dissolve in a solvent(liquid, gas ) to form a solution(soution can be saturated ,unsaturated, or supersaturated)
CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq)
in partial dissociation , we can say
2.25x 10^-8=
let Ca^2+=CO3^-2=S
2.25x10^-8=S*S
S^2=2.25x10^-8
S=0.00015mol/L
Converting that to g/l
the relative molecular mass of CaCO3=100g/mol
0.00015*100g/mol
0.015g/l
the solubility of CaCO3 is 0.015g/l @room temperature
is favored at equilibrium
From the calculations, we can see that, the change in the freezing point is -0.634°C.
<h3>What is freezing point?</h3>
The term freezing point refers to the temperature at which a liquid is changed to solid.
Given that;
ΔT = K m i
Number of moles sucrose = 35.0 g/ 342.30 g/mol = 0.1 moles
molality = 0.1 moles/ 300.0 * 10^-3 Kg
= 0.33 m
Thus;
ΔT = -1.86°C/mol * 0.33 m * 1
= -0.634°C
Learn more about freezing point:brainly.com/question/3121416
#SPJ1
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer:
4.13X10^3= 4130 in the expanded form