It’s easy, if the PH of any acidic solution = -Log[H+], where [H+] is hydrogen ion concentration, multiply each term by (-1) then raise each term as a power to (10), so it will become like this:-
[H+] = 10^(-PH)
Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
222 grams of calcium chloride is produced.
<h3><u>Explanation</u>:</h3>
The mole concept and the chemical equation are very much closely related with each other. In the chemical reaction, the compounds or elements in both sides are balanced according to the number of atoms of each side of the reaction. So from there we can easily find the amount of reactant reacts to produce desired product.
Here we can see that 2 moles of sodium chloride produces 1 mole of calcium chloride.
So, 4 moles of sodium chloride will produce 2 moles of calcium chloride.
Now, atomic weight of calcium =40.
Atomic weight of chlorine =35.5.
So,the molecular weight of calcium chloride = 
=111.
It means, 1 mole of calcium chloride weighs 111 grams.
So 2 moles of calcium chloride weighs
grams = 222 grams.
Answer:
A. Intramolecular interactions are generally stronger.
B. a. Only intermolecular interactions are broken when a liquid is converted to a gas.
Explanation:
<em>A. Which is generally stronger, intermolecular interactions or intramolecular interactions?</em>
Intramolecular interactions, in which electrons are gained, lost or shared, constitute true bonds and are one or two orders of magnitude stronger than intermolecular interactions.
<em>B. Which of these kinds of interactions are broken when a liquid is converted to a gas?</em>
When a liquid vaporizes, the intermolecular attractions are broken, that is, molecules get more separated. However, true bonds are not broken which is why the molecules keep their chemical identity.
Answer: In octet state.
Explanation: For noble gases they are stable in state since their outer shell contain fully occupied having 8 electrons.