1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
1 year ago
13

Why do most experts say we should not stop using plastic altogether?

Chemistry
1 answer:
Elodia [21]1 year ago
6 0
To make plastic involves a chemical reaction/formation which releases a lot of carbon dioxide into the atmosphere, damaging the ozone layer
You might be interested in
How could getting so much food from<br> the ocean negatively impact marine<br> ecosystems?
kumpel [21]
Marine food chains at risk of collapse, extensive study of world's oceans finds. ... The acidification of the ocean, where the pH of water drops as it absorbs carbon dioxide, will make it hard for creatures such as coral, oysters and mussels to form the shells and structures that sustain them.
7 0
3 years ago
Hey!<br> I need a simple connotation of how glowsticks glow.<br> Please and thank you.
LenaWriter [7]

Answer:

simple

Explanation:

The glow stick's outer plastic tube holds a solution of an oxalate ester and an electron-rich dye along with a glass vial filled with a hydrogen peroxide solution. ... Glow sticks light up when oxalate esters react with hydrogen peroxide to form a high-energy intermediate

5 0
2 years ago
PLEASE HELP WITH THESE THREE (30 POINTS)
olya-2409 [2.1K]
1. B
2. C
3. C


hope this helps
4 0
3 years ago
Which of the following reactions will produce a neutral salt?
anzhelika [568]
Strong acid weak base 
7 0
3 years ago
Calculate the activity coefficients for the following conditions:
uysha [10]

<u>Answer:</u>

<u>For a:</u> The activity coefficient of copper ions is 0.676

<u>For b:</u> The activity coefficient of potassium ions is 0.851

<u>For c:</u> The activity coefficient of potassium ions is 0.794

<u>Explanation:</u>

To calculate the activity coefficient of an ion, we use the equation given by Debye and Huckel, which is:

-\log\gamma_i=\frac{0.51\times Z_i^2\times \sqrt{\mu}}{1+(3.3\times \alpha _i\times \sqrt{\mu})}       ........(1)

where,

\gamma_i = activity coefficient of ion

Z_i = charge of the ion

\mu = ionic strength of solution

\alpha _i = diameter of the ion in nm

To calculate the ionic strength, we use the equation:

\mu=\frac{1}{2}\sum_{i=1}^n(C_iZ_i^2)        ......(2)

where,

C_i = concentration of i-th ions

Z_i = charge of i-th ions

  • <u>For a:</u>

We are given:

0.01 M NaCl solution:

Calculating the ionic strength by using equation 2:

C_{Na^+}=0.01M\\Z_{Na^+}=+1\\C_{Cl^-}=0.01M\\Z_{Cl^-}=-1

Putting values in equation 2, we get:

\mu=\frac{1}{2}[(0.01\times (+1)^2)+(0.01\times (-1)^2)]\\\\\mu=0.01M

Now, calculating the activity coefficient of Cu^{2+} ion in the solution by using equation 1:

Z_{Cu^{2+}}=2+\\\alpha_{Cu^{2+}}=0.6\text{  (known)}\\\mu=0.01M

Putting values in equation 1, we get:

-\log\gamma_{Cu^{2+}}=\frac{0.51\times (+2)^2\times \sqrt{0.01}}{1+(3.3\times 0.6\times \sqrt{0.01})}\\\\-\log\gamma_{Cu^{2+}}=0.17\\\\\gamma_{Cu^{2+}}=10^{-0.17}\\\\\gamma_{Cu^{2+}}=0.676

Hence, the activity coefficient of copper ions is 0.676

  • <u>For b:</u>

We are given:

0.025 M HCl solution:

Calculating the ionic strength by using equation 2:

C_{H^+}=0.025M\\Z_{H^+}=+1\\C_{Cl^-}=0.025M\\Z_{Cl^-}=-1

Putting values in equation 2, we get:

\mu=\frac{1}{2}[(0.025\times (+1)^2)+(0.025\times (-1)^2)]\\\\\mu=0.025M

Now, calculating the activity coefficient of K^{+} ion in the solution by using equation 1:

Z_{K^{+}}=+1\\\alpha_{K^{+}}=0.3\text{  (known)}\\\mu=0.025M

Putting values in equation 1, we get:

-\log\gamma_{K^{+}}=\frac{0.51\times (+1)^2\times \sqrt{0.025}}{1+(3.3\times 0.3\times \sqrt{0.025})}\\\\-\log\gamma_{K^{+}}=0.070\\\\\gamma_{K^{+}}=10^{-0.070}\\\\\gamma_{K^{+}}=0.851

Hence, the activity coefficient of potassium ions is 0.851

  • <u>For c:</u>

We are given:

0.02 M K_2SO_4 solution:

Calculating the ionic strength by using equation 2:

C_{K^+}=(2\times 0.02)=0.04M\\Z_{K^+}=+1\\C_{SO_4^{2-}}=0.02M\\Z_{SO_4^{2-}}=-2

Putting values in equation 2, we get:

\mu=\frac{1}{2}[(0.04\times (+1)^2)+(0.02\times (-2)^2)]\\\\\mu=0.06M

Now, calculating the activity coefficient of K^{+} ion in the solution by using equation 1:

Z_{K^{+}}=+1\\\alpha_{K^{+}}=0.3\text{  (known)}\\\mu=0.06M

Putting values in equation 1, we get:

-\log\gamma_{K^{+}}=\frac{0.51\times (+1)^2\times \sqrt{0.06}}{1+(3.3\times 0.3\times \sqrt{0.06})}\\\\-\log\gamma_{K^{+}}=0.1\\\\\gamma_{K^{+}}=10^{-0.1}\\\\\gamma_{K^{+}}=0.794

Hence, the activity coefficient of potassium ions is 0.794

6 0
3 years ago
Other questions:
  • As5F10 compound name
    13·1 answer
  • Compare and contrast the compositions of binary ionic and binary molecular compounds
    15·1 answer
  • Which types of asexual reproduction could be seen
    14·1 answer
  • Which answer below correctly identifies the type of change and the explanation for the boiling of water?
    12·2 answers
  • Ok I really really really need help!!
    10·1 answer
  • What is the relationship of matter to elements?
    8·1 answer
  • What would refract the most? air, water, or glass?
    11·2 answers
  • What force on Earth can affect the pull of gravity?
    13·2 answers
  • How to know so many have phosphorus atoms.
    15·1 answer
  • Which describes the oxidizing agent in a chemical reaction?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!