This is more of a physics explanation, but here we go.
Mass is a measure of how much "matter" is in an object. Weight is the force applied onto an object by gravity. Weight itself can be related to mass like this:

where g is a gravitational constant. For our purposes, it's defined by whatever planet you are on. Following this, we can demonstrate that mass is NOT the same thing as weight if we take two objects of the same mass and put them on different planets.
Let E refer to Earth and F refer to Mars

Following this, we can see clearly that weight is not the same as mass:

If weight was the same thing as mass, the two values would be the same, as the mass of the two objects is the same. But since weight is defined in the context of gravity, they are not.
Answer:
Whether something is a molecule or not depends on the type of bond that is formed when its atoms join together. In general, electrons can be shared between atoms (a molecular bond) or electrons can be completely removed from one atom and given to another (an ionic bond). Molecules have molecular bonds.
Answer:
C Force of gravity acting on an object
Explanation:
Hope that helps
have A good day
can I i have brain pls
The answer is 1.05 cubic centimeters and 1.05 mL (1 cubic centimeter is equal to 1 mL)
Answer:
The correct answer is "They can be separated by physical processes"
Explanation:
The definition of Mixtures is <em>the blending of two or more dissimilar substances</em>.
Mixtures can be divided into those that are homogeneous or heterogeneous meaning that they can be distributed evenly or can't be distributed evenly.