Answer:B. The portfolio of smaller stock are typically less volatile than individual small stock.
C. On average smaller stock have lower return than larger stock.
Explanation:
The larger stock most times have a higher volatility than smaller stock and usually have better records of performance, this therefore makes their returns higher than lower stock.
On an average the volatility of a smaller stock is greater than that of a portfolio of smaller stock for the portfolio stock will compensate for one another to limit the volatility.
A treasury bill has a government guarantee, their return is therefore lower and same applies to their volatility when compared to smaller stock.
Answer:
WB = BA(WA) + BB(WB) + BC (WC) + BD(WD)
1.6 = 0.83(0.5) + 1.50(0.1) + 1.42(0.15) + BD(0.25)
1.6 = 0.415 + 0.15 + 0.213 + 0.25BD
1.6 = 0.778 + 0.25BD
1.6-0.778 = 0.25BD
0.822 = 0.25BD
BD = 0.822/0.25
BD = 3.288
Explanation: The question relates to Beta of a portfolio. The Beta of a portfolio is the aggregate of Beta of each stock multiplied by the weight of each stock. The Beta of stock D was not given, thus, it becomes the subject of the formula.
Answer:
Tenemos un costo de $10 por unidad
C = $10/u
Tenemos un precio de venta de "p" dólares por unidad
V = P/u
Y tenemos una cantidad de unidades vendidas de 20(22-p)
Q = 20(22-p)
Halle la utilidad U(p) como una función del precio de venta "p".
Utilidad(p) = C*Q - V*Q
C*Q equivale a costo total, y V*Q equivale a ingreso total, así obtenemos la utilidad.
¿Cuál es el precio de venta "p" que genera una utilidad máxima?
$16/ unidad
¿Cuál es el precio de venta "p" que genera una utilidad nula?
$720/ mes
<span>Assume firm needs $10,000. Face amount of loan = $10,000/(1 â’ 0.11 â’ 0.20) = $14,492.75. Discount interest = 0.11($14,492.75) =$1,594.20. Compensating balance = 0.20($14,492.75) = $2,898.55.
With a financial calculator, enter N = 1, PV = 10,000, PMT= 0, FV = â’11,594.20, and solve for I/YR = 15.94%.</span>