Answer:
linear equation
Step-by-step explanation:
it's the only one that matches the description :)
4.7944 x 10^2 hope this helps!
Because x was *3 you had to y*3 which is
y=6
If
is the cumulative distribution function for
, then

Then the probability density function for
is
:

The
th moment of
is
![E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20y%5Enf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bn-1%7De%5E%7B-%5Cfrac12%28%5Cln%20y%29%5E2%7D%5C%2C%5Cmathrm%20dy)
Let
, so that
and
:
![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu%7De%5E%7B-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du)
Complete the square in the exponent:

![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B%5Cfrac12%28n%5E2-%28u-n%29%5E2%29%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac%7Be%5E%7B%5Cfrac12n%5E2%7D%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du)
But
is exactly the PDF of a normal distribution with mean
and variance 1; in other words, the 0th moment of a random variable
:
![E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1](https://tex.z-dn.net/?f=E%5BU%5E0%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du%3D1)
so we end up with
![E[Y^n]=e^{\frac12n^2}](https://tex.z-dn.net/?f=E%5BY%5En%5D%3De%5E%7B%5Cfrac12n%5E2%7D)
Answer:
y = 0.1x - 4
Step-by-step explanation:
Given the following data;
Points on the x-axis (x1, x2) = (-3, 7)
Points on the y-axis (y1, y2) = (-7, -6)
First of all, we would find the slope;
Mathematically, slope is given by the formula;
Substituting into the equation, we have;
Slope = (-6 - (-7))/(7 - (-3))
Slope = (-6 + 7)/(7 + 3)
Slope = 1/10
Slope = 0.1
Next, we would write the equation using the formula;
y - y1 = m(x - x1)
y - (-7) = 0.1(x - (-3))
y + 7 = 0.1(x + 3)
y + 7 = 0.1x + 3
y = 0.1x + 3 - 7
y = 0.1x - 4