They can fight the infection but not the disease
Answer:
142.7650889
Explanation:
I think the answer above is correct. So to find the velocity of the wave you can do: frequency*wavelength = velocity
in your case, the velocity is equal to 403.5m/s
so we know that the 403.52 is the total velocity of the wave
and the equation: velocity at 0 degrees Celsius *
where T represents temperature in Kelvins = veloctity
so we set 403.52 = 327*
and solve for T
T will then equal the degree in Kelvins
so to convert from Kelvins to degrees celsius you subtract 273 from the Kelvins value and you are left with the degrees in Celsius which equals 142.7650889 degrees Celsius
Gravitational force equals GMm/r^2, where G is constant, M and m are the masses, and r is distance.
For I, if both masses double, the formula becomes G2M2m/r^2, or 4GMm/r^2. Therefore, the gravitational force will quadruple or 4x.
For II, if the distance between the object doubles, the formula becomes GMm/(2r)^2 or GMm/4r^2. In this case, the gravitational force is 1/4x the initial force.
Answer: 44 N/m
Explanation:
Finding the interatomic spring stiffness
Because in our model all the bonds are assumed to be the same, the interatomic spring stiffness ks, interatomic is determined by adding the springs . The details of that addition are below, but the final result is that the interatomic spring stiffness is related to the spring stiffness of the wire like so:
Find the attached file for solution