Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.
In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
You have effectively got two capacitors in parallel. The effective capacitance is just the sum of the two.
Cequiv = ε₀A/d₁ + ε₀A/d₂ Take these over a common denominator (d₁d₂)
Cequiv = ε₀d₂A + ε₀d₁A / (d₁d₂) Cequiv = ε₀A( (d₁ + d₂) / (d₁d₂) )
B) It's tempting to just wave your arms and say that when d₁ or d₂ tends to zero C -> ∞, so the minimum will occur in the middle, where d₁ = d₂
But I suppose we ought to kick that idea around a bit.
(d₁ + d₂) is effectively a constant. It's the distance between the two outer plates. Call it D.
C = ε₀AD / d₁d₂ We can also say: d₂ = D - d₁ C = ε₀AD / d₁(D - d₁) C = ε₀AD / d₁D - d₁²
Differentiate with respect to d₁
dC/dd₁ = -ε₀AD(D - 2d₁) / (d₁D - d₁²)² {d2C/dd₁² is positive so it will give us a minimum} For max or min equate to zero.
-ε₀AD(D - 2d₁) / (d₁D - d₁²)² = 0 -ε₀AD(D - 2d₁) = 0 ε₀, A, and D are all non-zero, so (D - 2d₁) = 0 d₁ = ½D
In other words when the middle plate is halfway between the two outer plates, (quelle surprise) so that
d₁ = d₂ = ½D so
Cmin = ε₀AD / (½D)² Cmin = 4ε₀A / D Cmin = 4ε₀A / (d₁ + d₂)